

Curtis Bennett
xnagamemaking.com

A Simple
Introduction to
Game
Programming
With C# and
XNA 3.1
No Previous Programming Experience Required

A Simple Introduction to Game Programming With C# and XNA 3.1 By
Curtis Bennett

Copyright © 2009 Curtis Bennett

All rights reserved

Printed in the United States of America.

First Edition: 2009

This book is an updated edition of Creating 2D Games With XNA: A
Simple Introduction to Game Programming With C# and XNA from 2008.

While every effort has been made to prevent them, no responsibility is
assumed for any errors in this text.

Microsoft, Windows, DirectX, and XNA are registered trademarks of
Microsoft Corporation.

For sample code go to: xnagamemaking.com

The author’s website: curtisbennett.com

The free ebook edition of this book is sponsored by:

Makers of the XNA game:

Look for it on the Xbox LIVE Indie Games Channel under
the category Racing and Flying and the title:

 Charlie Cat’s Hot Air Balloon.

Table of Contents

Introduction i

Part I: An Introduction to Programming and C# 1

 Chapter 1: Beginning With C# 3

 Chapter 2: Data and Operators 17

 Chapter 3: Moving Around: Branching and Looping 29

 Chapter 4: Advanced Data Types and Functions 49

 Chapter 5: Object-Oriented Programming 71

Part II: Making 2D Games in XNA 81

 Chapter 6: 2D Games and XNA 85

 Chapter 7: Creating a Player Class 109

 Chapter 8: Scrolling Backgrounds 125

 Chapter 9: Animation 137

 Chapter 10: Adding Firepower and Creating Enemies 149

 Chapter 11: Adding HUD Text, Splash Screens,

and Special Effects 175

xnagamemaking.com i

Introduction

Microsoft's XNA Game Studio is becoming the most popular platform
for students and beginning developers to learn game programming. This
book, A Simple Introduction to Game Programming With C# and XNA 3.1: No
Previous Programming Experience Required, aims to give people with a limited
exposure to game programming an introduction to get them started. This
is by no means a comprehensive introduction, but just goes over the
basics.

Use In Education

Material from this book has been used at the community college and high
school level, and I’ve received reports that younger kids are using it too
to learn the basics of programming.

Why Use This Book to Learn XNA?

There are several popular XNA books, so why bother reading this one?
When trying to find an introductory XNA book for the college course I
found the options limited. Not that the books were bad, they just didn't
suit the purpose. Some were too advanced for beginners, others focused
on specialized issues (such as making helper libraries or spending
significant time on optimization) and weren't general enough for a class.
What I needed was a complete basic introduction to C# that XNA aimed
at beginners.

That is what makes A Simple Introduction to Game Programming With C# and
XNA 3.1different from other books: it is aimed at complete beginners,
not only people with no programming experience but those without
much technical experience. This book also focuses on basic game
programming concepts more than specific syntax. It is more of a basic
programming book using XNA than a book that just lists how to do
simple tasks in XNA. The book also keeps things simple by only
covering 2D games and would be ideal for a high school or lower level
college game programming course.

ii A Simple Introduction to Game Programming With C# and XNA 3.1

The material in A Simple Introduction to Game Programming With C# and
XNA 3.1 has also been tested on students and has been adjusted based
on feedback For instance, I was surprised to find that many students had
difficulty in abstracting a basic player class. Putting in a sprite and
moving it around on screen made sense, but they had trouble
encapsulating this into a separate class. This issue became an entire
chapter in the book (Chapter 7 – Creating a Player Class) to help students
get over this hurdle. And I found that audio was not a major issue, and
people can learn how to use it from the documentation and so it is not
mentioned here.

Target Audience

The main audience for this book is people interested in learning game
programming but who have no previous experience in programming and
who know little about making games. This book is also for developers
who may have some programming experience but limited exposure to
game programming (such as looking at tutorials online.)

This book is not for experienced game developers who are wanting to
learn XNA, or programmers who are looking for how to implement
advanced effects with XNA, as they will find the scope of the book too
limited.

Contents

Part I - An Introduction to Programming and C#

In this part of the book a basic introduction is presented on C#. An
emphasis is placed on the basic concepts of programming and object-
oriented design. This section has enough C# to get people started
making 2D games in the next section.

xnagamemaking.com iii

Part II - Making 2D Games in XNA

The second part of this book presents a thorough introduction to 2D
game programming. All of the major components, parallax backgrounds,
animation, enemy interactions, adding start screens and particle systems
are covered. We also walk through creating a complete game, a 2D
spaceship scroller.

Also note that all of the source code and samples are up at
xnagamemaking.com.

Feedback

Thank you for taking the time to look through this book. Any feedback
(or corrections) is appreciated. I can be reached at
curtis@xnagamemaking.com.

Curtis Bennett

mailto:curtis.r.bennett@hotmail.com

iv A Simple Introduction to Game Programming With C# and XNA 3.1

Part I: An Introduction to Programming and C#

Game programming is a lot of fun. Whether you want to learn game
programming as a hobby or to become a professional developer,
programming games is very rewarding. But a lot of people, when they
first decide to learn game programming, want to start making full 3D
games the first day. When I teach game programming I'll get questions
like “How do I make a game like Halo 3?” or “How do I program a
MMORPG?” in the first class. Some people are disappointed to hear that
we can't jump into doing those kinds of things right away. Before making
a 3D game we need to learn the basics of game programming and the
building blocks of all programming. That's what we'll do in this first part
of the book; we'll go over the basics of programming and C#. We won't
even get to graphics yet; all of our programs will be Console programs,
which are text based. The example programs here are all little text ones
and we'll even develop a very simple text-based “game” in the second
through third chapters and some basic ship game code in chapters four
and five. (I put game in quotes because it will really be just the start of a
game; we'll save the larger and complete games for XNA) We'll be going
through this material as quickly as possible, so we can get to the more
exciting Part II where we start making our 2D games.

2 A Simple Introduction to Game Programming With C# and XNA 3.1

xnagamemaking.com 3

Chapter 1: An Introduction to Programming

 In this chapter we'll start programming. We'll start at the very
beginning, discussing the very basics of what programming is and the
different paradigms of programming languages. Then we'll make our first
C# program. Specifically we'll do the following:

 Learn the basic concepts of programming

 Look at the different types of programming languages available

 Setup Visual C# Express and XNA 3.1

 Create a simple C# program

Programming Basics

So what exactly is a computer program? We can say that a computer
program is just a list of instructions written by someone (a programmer)
that can be given to a computer. The instructions (called computer code
or just code) are written in a programming language that the computer
can understand, and when the instructions run on the computer we say
the program is being executed.

You may have heard before that computers understand nothing except
ones and zeros and that's true. The language of computers is binary,
which is just long lines of zeros and ones. Everything you see, all the cool
artwork in the latest games, comes down to strings of binary. In the very
early days of computers people worked with binary directly, trying to
input representations of ones and zeros into the computer somehow. But
binary, while easy for computers to understand, is difficult for people, so
computer scientists started making special letter combinations to
represent different computer commands from the binary. For instance,
let's say the programmer wanted to tell the computer to add two
numbers. The numbers are stored in memory at places called R1 and R2

4 A Simple Introduction to Game Programming With C# and XNA 3.1

and the programmer wants to put their sum at place R3, the programmer
would input something like this:

ADD R1, R2, R3

This is called assembly language and for years computer programs were
written in this, and all of the video games were programmed with it (and
it is still used in graphics today in shaders.) But writing computer
programs with assembly is still not very straightforward. Seeing one or a
few lines of assembly code is simple enough but imagine trying to deal
with thousands of lines of it. This lead people to create high level
programming languages like C++, Java, or C#. These languages let
people program computers in a way that is easier for the programmer to
understand. For example, the previous line of assembly code would be
written like this in C#:

r1 = r2 + r3;

Except that instead of r's for the names of the numbers we'd have
something more meaningful, like:

totalGold = goldInBag+ goldInTreasureChest;

This is a statement, a line of computer code. The files that contain code
are called source files. With a high level language we need a way to
convert these high level statements into instructions that the computer
can understand. To do this we use a program called a compiler. A
compiler takes in source files and changes the instructions to a form the
computer can understand (which isn't binary directly; it changes to other
code for the operating system, but we won't worry about those details.)
The compiler creates an executable program that can be run on the
computer. This process of taking the source file(s) and creating the
executable is called compiling or building the program. The compiler we
are going to use is Visual C# Express, a very popular and powerful
compiler from Microsoft, and we'll go over setting it up later in this
chapter.

xnagamemaking.com 5

As for the programming language we'll use C# (pronounced C sharp.) It
is our language of choice for, among other reasons, it's the only language
that works with XNA. C# is only one of many other programming
languages (some of the most popular are C++, Java, and Visual Basic.)
They each have their own strengths and weaknesses. C# is similar to Java
and the language C++ (and C++ is an extended version of the C
language.) Some beginners, when hearing that C# was partially based off
of C++, think it's a good idea to first try to learn C++ or C before C#.
But that is really unnecessary, and can make things more confusing trying
to learn two or three languages instead of one. C# is actually a lot easier
to use than C++ (at least in my opinion) and there's no advantage to
learning C++ if you're working with C#. (But note that currently C++ is
the most popular language to program games. While C# may become the
dominant language, today all of the larger and powerful games use C++,
so it would be good to learn C++ after C#.)

We should also note that C# uses the .Net framework; a huge collection
of classes that provide functionality for a wide range of applications.
We'll also be using XNA 3.1. XNA is a special add-on that has game
programming functionality which obviously we'll learn a lot about later.
But before getting into much info on C# specifically, let's look a bit at
programming languages in general.

Types of Languages

Not all programming languages are created equal, and it's good to know
about the different types of languages available. While all computer code
eventually turns into binary for the computer, before that they have a lot
of differences. The most obvious difference between various
programming languages is their syntax, the rules for how they are written.
Syntax is an important issue for programming, as all computer
instructions must be typed in a very strict way, the littlest change from
the way a computer statement is supposed to be will give an error. For
instance, part of C#'s syntax is that at the end of each instruction there is
a semicolon (like at the end of the adding example before) and without
the semicolon an error will result. This semicolon rule is pretty common,
but some languages like Visual Basic don't use a semicolon for that. But

6 A Simple Introduction to Game Programming With C# and XNA 3.1

besides syntax differences computer languages can also differ in the way
they are designed; their whole way of being organized and structured.
There are only a few major paradigms (types) of programming languages.
Let's look at a few.

Structured (Procedural) Languages

Structured languages are written in a very straightforward way. They start
at the beginning and just list all of the computer instructions one right
after the other. A program is made up of a (usually) very long sequential
list of commands telling the computer what to do. The computer
executes (does) the instructions in order, doing statement one first, then
statement two, and so on. A structured program looks something like
this:

instruction 1;
instruction 2;
...
instruction 5000;
...

If you've ever taken a course in school or tried programming in BASIC,
then you've used a structured language. This was the original and major
paradigm for computer languages for years, and is still popular today.
The most popular language of this type is called C (and C#'s syntax is
based on it.) Looking at our program above again, you can imagine that
as these types of programs become very long you'll need to repeat some
of the code. Let’s say in several parts in a program we need to convert a
temperature from Celsius to Fahrenheit and that code will be repeated
over and over. To handle this structured languages are usually block
based, meaning instead of one long list of code they have functions
(blocks) of code that each perform separate tasks. The program for the
temperature could look like the following:

function changeTemperature
(some instructions here)
function end

xnagamemaking.com 7

instruction 1;
changeTemperature;
instruction 2;
...

The temperature conversion function is defined in the beginning of the
program, and after instruction 1 we call the function changeTemperature
and do all of the code inside of it. Then we continue with other code and
will call it again later when needed. This has many big advantages. The
main one being we don't have to repeat typing in computer code; we can
write something once and then call it as a function when we need to.
Using functions also helps organize the code; we can put separate
functions together in separate source files. Functions also help with a
host of other issues we'll look at later.

But structured programming does have disadvantages. For starters,
having all of these functions is fine up to a point but as programs
become very large they can start to be confusing, and errors in the code
can be hard to find. But more importantly, structured programs are
written in a way for computers to understand, not for humans to
understand. If we started designing, say, a car game we would start
describing it in ways like see a car on screen, press up to accelerate, down
to break, have to hit this checkpoint before time runs out, etc. When we
go to write a structured program to do this it's not always easy to change
that design to a linear list of code. The game isn't thought of as just a
series of steps, and it'd be nice if our programs could be coded in a way
that reflected that. So developers came up with our next type of
programming language:

Object-Oriented Languages

Instead of looking at the car game and asking what series of steps we can
do to describe a car in a computer program, it would be nice if we had a
programming language that could describe a car in more human terms.
Instead of thinking of steps to program a car we would like to program a
car game by creating a car object and giving it a description. Object-
Oriented programming (OO) does just that. Instead of thinking of a
series of instructions for a car, we could first think how we can describe a

8 A Simple Introduction to Game Programming With C# and XNA 3.1

car, what model is it, what color, or describing how fast it's going. We
can then think of what kind of functionality a car has, such as we can
accelerate a car, turn it, or brake, etc. We can treat the car as an object,
and OO programming allows us to think of the real world and program
in terms of objects. We make classes of objects, which are descriptions
for types of objects. Classes are designs for objects, a template for what
they are like. The actual objects themselves are called instances of a class.
For example, we could make a very specific car class to describe Honda
Accord cars, the class would contain information all Accords have (such
as year, mileage, color, etc) But this class would only described the car in
general, an actual Honda Accord sitting in a parking lot outside of the
building I'm in right now would be an instance of the Honda Accord
class. The car in the parking lot is not a class of cars; it is a specific
instance of a car. This difference between classes/instances may not
seem that important now but will become an important issue later.

Anyways, let's look at making just a general simple car class. We can
create a class like the following:

class Car
{
 modelType;
 currentSpeed;

 accelerate();
 turnLeft();
 turnRight();
 brake();
}

Classes are made out of a combination of data (descriptive properties like
the modelType and currentSpeed) and functions (actions that do
something to the object like the accelerate() or turn left(). We can tell
what is a function because they end in the two parentheses, (). Some
people think of objects as nothing more than just data and functions,
only a good way to organize programs. Others say that the objects in
programs should be very robust and mimic real life, I've heard OO
proponents say they're angry over how the term “window” is used in
computers, as a window is something transparent you see through and

xnagamemaking.com 9

that doesn't match up with its computer counterpart. Object-Oriented
Design, choosing what the different objects and classes are going to be
for a program, is huge field. In our programs and games, though; we'll
just try to keep them as straightforward as possible.

Overall OO programming is the main paradigm in programming today.
All of the most popular languages, C#, C++, Java are Object-Oriented,
and even languages like Visual Basic which used to not be OO are
becoming that way. There are just so many advantages to this way of
programming. Besides it being easier to understand and organize
programs, OO programming lends itself to be used by teams since
different team members can easily do different objects for a system.
We've just scratched the surface of OO programming here, but we'll look
at it in more detail later in the book.

Lists/Logic Languages

Structured Programming and OO programming are the two major
paradigms of programming, all of the very popular languages fall into one
of them. But this doesn't mean that all programming languages work that
way. Some languages work in very unique and original ways. For instance,
the language SML uses lists as its way of programming. You start with a
list (a string of characters) and this list is manipulated by the program as
it goes through it ending with a different list at the end (if this sounds
strange or confusing don't worry about it, as most programmers have a
hard time understanding languages that aren't structured or OO) Other
languages use logic to make programs, inputting in logical rules from
philosophy to create programs. These other paradigm languages are
usually very good at doing a few things (For instance, SML can do
complex list manipulations much easier than C# or C++) but aren't
general enough to do general programming tasks. And outside of making
a few tools for making games, aren't used in the industry.

Type of C#

So we've been through the major types of programming languages, but
what is C#? Well earlier we did say that C# is Object-Oriented and it is,
everything in C# is an object, and all the code is about manipulating

10 A Simple Introduction to Game Programming With C# and XNA 3.1

objects. It uses the .Net framework, which is a huge collection of classes
(objects) to use. Likewise XNA is a collection of classes to use too, which
are made especially for game programming. But to be more specific, C#
is called a block-structured Object-Oriented language, which means that
while objects are used for everything, the functions (or methods to be
more precise, methods are a special type of functions), are contained in
blocks, which seem like little procedural programs. In fact, the programs
we'll be doing in the first part of the book will seem very similar to
procedural programs, until we get to the part on OO.

Our First Program

But enough theory, let's get down to making our first program.

Setting up C# and XNA

Before we can program anything we'll need to set up our programming
environment, that is to say Visual C# Express and XNA. I could go
through the steps to setting up XNA in detail, but Microsoft has a lot of
good documentation set up for this; we’ll just mention the main points.
For details go to: creators.xna.com/en-US/quickstart_main. Also note if
you have a full commercial version of Visual Studio you can use that
instead of the Express edition.

To setup XNA download and install the following:

 Visual C# 2008 Express Edition

 XNA Game Studio 3.1

Installing these is simple, just go to creators.xna.com/en-US/downloads
and click on the appropriate links. Again go to creators.xna.com/en-
US/quickstart_main for more details.

First C# Program

Now that we have Visual C# Express setup let's go straight to making
our first program. Go ahead and start Visual C# by going to Start->All

xnagamemaking.com 11

Programs->Microsoft Visual C# Express 2008. You'll see a screen
similar to the figure below.

Our first program is the traditional first program of any programming
language; we'll make a program that prints “Hello World!” on the screen.
That may not sound like the most exciting thing out there, but it's an
accomplishment to create a program and execute it.

Our first step is to create a project. All code in C# is organized into
projects, which organize source files and resources. In Visual C# Express
Go to File->New Project. There are several program types, but select the
icon Console Application, and in the name type “HelloWorld” (without
the quotation marks).

12 A Simple Introduction to Game Programming With C# and XNA 3.1

Then click OK. The code below is then displayed in the left side of the
window:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

We'll go through this line by line in a moment, but for now just type in
the following line in between the two brackets {} after the string void
Main line:

Console.WriteLine("Hello World!");

The complete program should look like this:

using System;
using System.Collections.Generic;

xnagamemaking.com 13

using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

Next go to Debug->Start Without Debugging (or hit Ctrl+F5). The
following will display on the screen:

Simple as that we have our first program running. If you have any
problems make sure the code is typed in exactly as in the listing. Let's go
through it line by line, starting with:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

14 A Simple Introduction to Game Programming With C# and XNA 3.1

C# gives a lot of different instructions we can use in the program, but we
want to tell C# which of the instructions we'll be using. (We don't want
C# to give us every available instruction, since we won't use most of
them and it adds overhead to the program to say we'll use more
instructions then we need.) The first part of the program with the
“using” statements tells C# what instructions we'll use and we'll leave
this the same for our Console programs, but include XNA references
when we get to part two.

The”using” instructions also let us type things in more compactly. In the
Console instruction we put in above we could have written:

 System.Console.WriteLine("Hello World!");

The using System line allows us to write the Console command without
the System.

Note again that each of the commands ends with a semicolon; it is a way
of telling C# that an instruction is complete. The amount of whitespace
(spaces, tabs, returns) after an instruction doesn't matter, that the
semicolon is there is all that counts.

Another note is that C# defines blocks of code by brackets {}. Looking
at our code again notice everything is in three blocks. The first block,
namespace HelloWorld, defines a namespace, which is just a general way
to group code. The second block class Program defines an object, like
what we talked about briefly in the Object-Oriented programming
section before and we'll discuss objects more later in the book. The final
block “static void Main(string[] args)” defines a function (or method)
called Main, and is the starting point for the program. When we start the
program the compiler starts running instructions from Main (and no
matter how large a program becomes it only has one Main.)

As for the line of the program that does the actual work:

xnagamemaking.com 15

Console.WriteLine(“Hello World!”);

Is a pretty straightforward instruction to the Console object (the box that
holds the text) telling it to write the line “Hello World!” on the screen.
Statements like these are the working part of programs, and they are
contained in object's functions (methods). And that's the whole program.

Comments

Besides regular code instructions we can add comments to programs.
Comments are lines of text that are helpful notes to the programmer but
are completely ignored by the compiler. C# has support for three types
of comments. The first is a single line comment, helpful for little
descriptions. It is merely two slashes, //, and everything after them is
ignored:

// Print out Hello World!
Console.WriteLine("Hello World!");

The second type of comment is a multi line comment; these are helpful
for giving longer descriptions of things. They are used by /* for the
beginning and */ for the end, everything in-between being commented:

/*
 Print out Hello World!
*/
Console.WriteLine("Hello World!");

The third type of comment is for documenting code with XML, which is
good, but we won't bother with it here for our programs.

16 A Simple Introduction to Game Programming With C# and XNA 3.1

Summary

In this chapter we had an introduction to computer programming and
the different paradigms of programming languages out there. Then we
setup Visual C# Express and created our first program. In the next
chapter we'll look at programming more by seeing how programs handle
data.

xnagamemaking.com 17

Chapter 2: Data and Operators

Data, that is to say information, is the main thing that programs work
on. We can think of computer programs as doing nothing more than
reading in data, doing some kind of manipulation on the data, and
spitting it back out. This is true for all video game programs even if it
may not seem immediately obvious. All games do is read in some art and
other data, manipulate it to display it onscreen, then read in more data
(keyboard presses, other input) and do some more things and output
some more data (pictures, audio, etc.)

In this chapter we'll look at how data is used in programs and different
operations that change it. Specifically we'll cover:

 What variables are and how to implement them in code.

 The different simple types of variables in C#

 C#'s basic operators

 Start making a simple text based game, “Finding the Gold”

Data

The simplest type of data is a simple variable. A variable is just a place in
memory to store some information, and a name to describe where it is at.
The information that is stored in the variable is called the value of the
variable. Variables also have specific types (number, letter, string)
depending on what kind of data they're storing. For instance the
following:

int age;

Creates a variable of the integer type (a number) named age. We can then
assign the variable a value, such as:

18 A Simple Introduction to Game Programming With C# and XNA 3.1

age = 142;

So later in the program (unless we change it) when we read what age is it
will be 142. This is the basic concept of variables; let's go through some
more facts about them.

Declaring Variables

Before we can use any variables we have to declare them; that is to tell
the compiler about the variable before doing anything with it. The basic
syntax of this is:

type name;

As in the age example above, we had to give the type, int for integer, and
the name of the variable (age). The most common basic types are bool
(true/false), int (integer), float (a decimal number) and char (a single
character.) (We'll go over these types in more detail in a moment, but
there are a few more points to cover first.) When we declare a variable we
can also initialize it to a value. In the age example, we could have written
it as:

int age = 142;

Variables should be assigned a value before they are used in C#.

Assigning Variables

We used the equal’s symbol above to initialize the age variable to a value.
Notice the equals sign in C# doesn't mean equals in the mathematical
sense. It is actually the assignment operator; it takes the value to the right
of it and assigns it to the variable on the left of the sign. Again for
example

age = 142;

xnagamemaking.com 19

Says to take the value to the right of the equals sign, 142, and assign it to
the variable age. This is called assigning the variable. (The equals sign in
C# isn't =, but as we’ll see in the next section, is two equals signs, ==.)

As we said before C# requires that a variable be initialized before it is
used. A program like the following:

int test;
Console.WriteLine(test.ToString());

will generate an error for using the variable test when it is unassigned. In
regular code not using an unassigned variable is a must and when we
create objects it is not required (a default value will be created) but is still
the preferred thing to do.

Simple Variable Types

Now that we looked at how variables are declared and how to store
information in them (assign them values), let’s go back over some of the
different simple variable types we can use.

bool – boolean. Boolean variables are pretty simple, they either have one
of two values, “true” or “false” These types come up when we start
doing logic testing. There are a lot of places in programming where we
need to decide if something is true or not (like if a game is currently
paused) and these variables come in handy for that.

// A bool variable
bool testBool = true;

int – integer In case you don't remember from math class, integers are
numbers that are “whole”, in that they don't have any fractional
components, no decimals. These numbers can be negative, positive, or
zero. Integers come up a lot in programming; they are especially useful
whenever we need to count something.

20 A Simple Introduction to Game Programming With C# and XNA 3.1

// An int variable
int testInt = 5;

float – floating point number These are decimal numbers, like 3.14,
0.0001, etc. Basically whenever we need any type of decimal number this
is the type of variable we'll be using. The only catch with this is that any
floating point number we type in we'll need to put a little “f” after it to
say that it is a float. For example:

// float variables
float piGood = 3.14f; // Better, the little f ends our problems
float piBad = 3.14; // Compiler will call this an error

double – another decimal number. Doubles are similar to floats; they are
also decimal numbers, only you don't have to include the little “f” after
them. The difference between float and double is that double uses much
more memory (we can think of it as using double the memory of a float.)
We mostly use float for decimal numbers, as memory is important and
we don't want to use excess if we don't have to, and (more importantly)
the larger numbers are less efficient and take more time to do
calculations than the floats. If on the other hand we are doing something
very precise, like a complex physics calculation where we want to have as
little error as possible, we'll need the numbers to be more precise (use
more memory) and we'll use double instead of float.

// A double variable
double testDouble = 3.14;

char – a single character. Enough numbers, this simple type is a variable
that just stores a single character as its value. The letter has to be put in
single quotes.

// A char variable
char letter = 'a';

xnagamemaking.com 21

string –A series of characters. Not technically a simple type, but used
just as much as the others. A string is a series of characters, like a line of
text. The string, unlike the char, is denoted by putting it in regular quotes:

// A string variable
string lineOfText = “This is a test string”;

Strings come up everywhere in programming, and it is a class that we'll
be using a lot. We'll cover strings in more detail in chapter 3.

These aren't all of the simple types we can use in C#. Each C# type also
has an equivalent type in the .Net framework. If you're curious about the
.Net types check the documentation in Visual C#. We'll only be using the
simple types described above.

Type Conversion

We have all of these different variable types in C#, but the language is
pretty strict about type conversion, converting from one type to another.
The following code will generate an error:

float piFloat = 3.14f;
int piInt = piFloat;

This code will generate the error message:

Cannot implicitly convert type 'float' to 'int'. An explicit conversion exists (are
you missing a cast?)

In some languages, like C++, assigning a float variable to an integer is
OK (the pi code will compile in C++); the int variable will just ignore the
decimal part. But in C# we need to make our conversions explicit,
meaning we have to specifically state a conversion is going on. We do

22 A Simple Introduction to Game Programming With C# and XNA 3.1

this by putting the variable type we want to convert to in parenthesis is
front of it:

float piFloat = 3.14f;
int piInt = (int) piFloat;

The above code will compile just fine (piInt will have a value of 3). We
can also convert using the .Net Convert method, which we'll see a bit
later in this chapter.

C# also does implicit conversion if the type being converted from is a
subset of the type converting too. This means that since all ints are
simpler than floats, we don't have to implicitly convert ints to floats.

// The following will run OK:
int basicNumber = 5;
float basicFloat = basicNumber;

Variable Naming

When we start making large games there will be many, many variables in
them. One of the most important things to do when naming a variable is
to make it clear and easy to recognize what the variable means. For
example, let's say we're making a car game and we need to keep track of
the maximum speed the car can go. A good variable name would be
something like:

float maxSpeed;

But even this might not good enough if we're using different units for
speed in different parts of the game (like miles per hour, feet per second.)
A better name would then be:

float maxSpeedMph;

xnagamemaking.com 23

A bad variable name for maximum speed would be:

float ms;

This might be easier to type and at first ms for maximum speed makes
sense. But later as the program grows the variable ms could be
ambiguous (someone could confuse it for meters per second.) Always
make variable names clear.

In addition we usually name simple variables using lowerCamelCase,
which means multiple words are combined using a capital letter for each
new word (and the first word is lower case) For class and functions
names we use UpperCamelCase, which is like lower camel case except
the first letter is also capitalized.

Mathematical Operators

So we now have that ability to declare variables and assign them values.
let's look at how to do more things with them using operators. An
operator is special function that does some action on a variable. The
assignment (equals sign) is an operator; it performs the action of putting
a new value in a variable. The first class of operators we'll take a quick
look at our C#'s mathematical operators, these are operators we can use
on our number variables, int, float, and double. The simplest are the
addition and subtraction operators. They are pretty straightforward, we
just use the plus (+) and minus symbols (-). Here's an example that
shows how they work:

float startSpeed = 5.0f;
float currentSpeed= startSpeed + 5.0f;
// currentSpeed has 10.0f in it.
currentSpeed = startSpeed – 5.0f;
// currentSpeed has 5.0f in it

The multiplication and division operators work similarly, and for
multiplication we use the star symbol * and for division the backslash /.

24 A Simple Introduction to Game Programming With C# and XNA 3.1

float startSpeed = 6.0f;
float currentSpeed = startSpeed * 3.0f;
// currentSpeed has 18.0f in it.
currentSpeed = startSpeed / 2.0f;
// currentSpeed has 3.0f in it

One possibly surprising thing is that when doing division with integers
the remainder is ignored (since integers don't store a decimal part, they
can't store remainders):

int testInt = 17 / 5;
// testInt now equals three, the remainder two is ignored.

Another mathematical operator is the modulus operator, which is
basically the remainder operator. It performs division on two numbers
and then outputs the remainder of them. The symbol for modulus is %:
Here is an example:

int testInt = 17 % 5;
// testInt now equals 2, the remainder of 17 / 5

Unary Operators

Notice that whenever we do an operation like adding where we add two
numbers and store the result in a third:

int testInt = testInt1 + testInt2;

the two numbers that were added didn't change; testInt1 and testInt2
have the same value after that line of code as they did before we entered
it. Sometimes we need to do this. But sometimes we want to do
something like this:

testInt = testInt + 5;

xnagamemaking.com 25

Where we add 5 to testInt and testInt itself is changed. This happens so
often that there are special unary mathematical operators just for this
occasion (unary meaning one) They work by putting the math symbol
before the equals sign. The following two lines of code are the same:

testInt = testInt +5;
testInt += 5; // Same as the above

// This works the same for multiply/divide/subtract

testInt -= 5; // Same as testInt = testInt – 5;
testInt *= 5; // Same as testInt = testInt * 5;
testInt /= 5; // Same as testInt = testInt / 5;

Another very common thing to do that is even simpler is to add or
subtract one from a number. This comes up so much that there are
special operators for it. We put ++ to increment, add one to a number,
and –- to decrement, to subtract one from a number. These can be put in
front of or behind the number (there are some slight technical difference
for putting in front of or behind a number but we won't worry about
them here) Here's an example:

testInt = 5;
testInt--;
// testInt now equals 4
testInt++;
// added one to testInt, now it equals 5 again

Example Program

The following program is pretty straightforward; it just a quick example
showing a few variables at work. The only new things are the Readline
and Convert methods. The Console.Writeline method writes a string of
text to the console, and Console.Readline() works the opposite way,
pulling a string of text in from the console. When we have a string of
text, such as in the example program when the user enters their age, we
sometimes want to change the string into a different variable, like
changing the age string to an int. To do this we use the Convert method.

26 A Simple Introduction to Game Programming With C# and XNA 3.1

Typing in Convert period will bring up a list of different types to convert
a string to. The instruction:

int age = Convert.ToInt32(Console.ReadLine());

Reads in a string from the console and converts it to an int (and stores it
in the variable age.) The dangerous thing with this code is if the user
enters a string that won't convert to an int. This will throw an exception,
that is, cause an error (which we won’t worry about for now.) Here is the
program:

static void Main (string[] args)
{

int feet;
int inches;

Console.WriteLine("I'm going to ask about you height, feet and inches.");

Console.WriteLine("How many feet tall are you?");
feet = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("And how many inches?");
inches = Convert.ToInt32(Console.ReadLine());

float cm = ((feet * 12) + inches) * 2.54f;

Console.WriteLine("You are " + cm.ToString() + “ centimeters tall.");

}

A sample output is:

I'm going to ask about you height, feet and inches.
How many feet tall are you?
6
And how many inches?
2
You are 187.96 centimeters tall.
Press any key to continue . . .

xnagamemaking.com 27

Two more things to know for now (we'll discuss them in more detail
later.) Any variable in C# can be converted to a string, you just add the
.ToString() to the end of the variable. Second to combine two or more
strings into one you can concatenate them, which means to put them
together, by using the plus sign. That is how the line:

Console.WriteLine("You are " + cm.ToString() + “ centimeters tall.");

Becomes

You are 187.96 centimeters tall.

By using the .ToString() on the cm variable and concatenating all of the
strings together for the output.

(Note depending on the context the .ToString() isn’t always necessary,
but we’ll always use it here for clarity.)

Finding the Gold Game

Next let's take the first steps to make our Console game “Find the
Gold.” The concept of this game is pretty simple; we'll have the player
make a series of choices to guess which way to find a bag of gold. The
first thing we'll do is ask for the player's name and print it out. Then we’ll
ask the player to choose a door, 1, 2, or 3 and for now just print out the
door number. Go ahead and create a new Console project called
FindGoldGame. Here is the code:

static void Main(string[] args)
{

Console.WriteLine("Welcome to the Find the Gold Game!\n What is your
name?");

string name = Console.ReadLine();

Console.WriteLine("Hello, " + name + ". Which door do you choose, 1, 2,

or 3?");

28 A Simple Introduction to Game Programming With C# and XNA 3.1

int door = Convert.ToInt32(Console.ReadLine());

Console.WriteLine("You chose door " + door.ToString());
}

Here's an example output:
Welcome to the Find the Gold Game!
 What is your name?
Curtis
Hello, Curtis. Which door do you choose, 1, 2, or 3?
2
You chose door 2
Press any key to continue . . .

This code should be straightforward. We just ask for the player's name
and then ask for a door number. The only new thing is the '\n' character
in the first WriteLine. The '\n' means newline, and it's our way of telling
the text to hit return on the keyboard. That's why when we run the
program the “What is your name?” appears on the second line. Then we
print out the door number the player chose. In the next part we'll put in
switches so the choosing the door will mean something.

Summary

This chapter took a look at simple variables in C#. These are the building
blocks of all our programs, and in the next chapter we'll add to our
programming capability by looking at how to change the direction the
code executes in.

xnagamemaking.com 29

Chapter 3: Moving Around: Branching and Looping

Let's imagine a long listing of computer code, just a bunch of
statements one after the other:

statement 1
statement 2
statement 3

and so on. And let's imagine a computer executing the code and stepping
through it directly, just going statement 1, statement 2, statement 3
The program can do a lot of things going through the code directly, but it
could do more interesting things if instead of going one by one it could
choose to go to different parts of the code. Maybe it goes statement 3,
statement 4, then jumps to statement 7, statement 8 and continues. Or
maybe it skips statements 7 and 8 and goes straight to 9. This concept of
letting code run in different ways it called branching. Another thing we
could have the program do is repeat a few lines of code, instead of going
to statements 7, 8, 9, and then to 10 it could repeat 7, 8, and 9. It could
execute 7, 8, 9, then repeat it again and again a few times, then go on to
line 10. This concept of repeating a series of statements is called looping
and is very important to programming. We'll cover branching in the first
part of this chapter and looping in the latter part. Specifically we'll do the
following.

 Learn about branching in code

 Implement the if-else statement

 Implement the switch statement

 Learn about looping

 Implement the for, while, and do-while loops

Branching

Branching in computer programming means being able to change the
direction of code when it executes, skipping some parts of code and
executing others based on certain conditions. This is a fundamental

30 A Simple Introduction to Game Programming With C# and XNA 3.1

concept of all structured programming languages and the most common
way to branch code (in all structured languages not just C#), is to use an
if statement.

if statement

The idea behind the if statement is simple: when the program goes to the
if statement it performs a test. If the test is true the code in the block
after the if statement is executed, if the test is false the code is skipped.
The syntax is:

if(test)
{
 // Code here runs if test is true
}

This works great for many situations. But besides the single if block we
can add an else block after the if. The else says that if the test is false we
execute the code following the else. The syntax for this if-else statement
is:

if(test)
{
 // Code here runs if test is true
}
else
{
 // If the test was false, code here runs instead
}

Let's make a more complete program that's pretty simple but will give an
example of the if statement in action. Create a new Console project and
add the following lines of code so the main function looks like the one
below:

 static void Main(string[] args)
 {
 int age;

xnagamemaking.com 31

 Console.Write("Enter your age: ");
 age = Convert.ToInt32(Console.ReadLine());

 if (age > 30)
 {
 Console.WriteLine("You're over 30.");
 }
 else
 {
 Console.WriteLine("You're not over 30 yet");
 }
}

Then run the program with Ctrl+F5. The program is pretty
straightforward. The first few lines declare the variable age (which stores
the user's age) that it gets from the user. Then the test “age > 30” is done
in the if statement and tests if age is greater than thirty. If it is the user is
told they're over thirty, if not they are told they're not.

The first question we can ask concerning the if statement is what kind of
tests are there? There are several different types of tests we can do, but it
all comes down to something that will output the values true or false.
These types of tests are inspired by Boolean logic, a type of mathematical
logic.

Boolean Tests

Remember in chapter two we discussed the boolean variable type, which
can be set to true or false. Well this type can be used for our if tests.
Here's a slightly contrived example of a program where at some point we
need to decide to draw a triangle or not:

bool drawTriangle;

... // Some code happens to set drawTriangle to true or false

if(drawTriangle)
{
 // Draw the triangle

32 A Simple Introduction to Game Programming With C# and XNA 3.1

}

We can also use the not operator (an exclamation point in front of the
boolean variable) to reverse the true/false for a test. For example:

if(!drawTriangle)
{
 // Code here runs if drawTriangle is false
}

// !drawTriangle means not true

Comparison Tests

Besides just tests with boolean variables directly we can do many
comparison tests. The most basic tests are with two numbers and we can
compare if one is less or greater than the other, just like in basic math. To
write things mathematically we can say that for any two numbers A and
B we can do the following tests:

if(A < B) // True if A is less than B
if(A <= B) // True if A is less than or equal to B
if(A > B) // True if A is greater than B
if(A >= B) // True if A is greater than or equal to B

This is the type of test we used in the age program previously. Besides
these greater/less than ones we can also test for equality. To test if two
numbers are equal we use the equality sign, which is two equal signs:

int A, int B;
// Some code does things with A and B
if(A == B)
{
 // Code here runs if A is equal to B
}

So in C# for "equals" we use two equal signs. Note too we use this
equality test with integer type numbers, which are whole numbers, but
usually not with decimal numbers. The problem with comparing decimal

xnagamemaking.com 33

numbers such as float for equality is that they can be unreliable because
of precision problems and round off errors. Let's say we have:

float number;
...
// Here number = 0.000000001f
if(number == 0.0f)
{
 // This code is skipped, since number doesn't equal zero
}

But in the above case we probably wanted the code inside the if brackets
to be executed, since number is very close to zero, but we could easily
have a round off error that caused an extra 1 at the end of it that throws
the test off. And the equality tests aren't just for numbers, many classes
have built in the == for an equals test. For example we could compare if
two string are equal with it.

And with the equality test we can also have a test for not being equal.
The symbol for this is an exclamation point and an equals sign !=:

int A, int B;
// Some code does things with A and B
if(A != B)
{
 // Code here runs if A is not equal to B
}

Remember the exclamation point ! means not true.

The previous tests for the if-statements all used a single test to decide if
the code would run or not. But inside the if statement we can combine
multiple tests. We do this by using the and, &&, operator and the or, ||,
operator.

The and operator says that for the test to be true, all of the conditions
must be true. Let's say that we wanted to test if someone's age is between

34 A Simple Introduction to Game Programming With C# and XNA 3.1

20 and thirty. This is two tests, one if the age is 20 or more and another if
it is less than or equal to 30. We make sure both of these are true by
"anding" them together:

if(age >= 20 && age <= 30)
{
 // Code runs here if age is between 20 and 30
}

Now let's say that instead of identifying people between twenty and
thirty, we want to identify people who are either pretty young, less than
15, or pretty old, over 85. So we want our if statement to be true if the
age is under 15 or over 85, then we'll put an OR, ||, between them
(Note: The vertical slash symbol can be hard to find on the keyboard for
a lot of people at first, it's the capped of the backslash \ in the upper
right corner of the keyboard.) Our if statement will then look like:

if(age < 15 || age > 85)
{
 // Code here runs if age is under 15 or over 85
}

The OR statement will also be true if either of the conditions is true.
Unlike the "or" used when were speaking, which usually means just one
or the other. For instance, if someone said "I'm going to the grocery
store today or tomorrow" we take this to mean that they will go to the
store today or tomorrow, but not go the grocery store both today and
tomorrow, which is what the computer OR means. As an if statement it
would be:

bool gotoStoreToday, gotoStoreTomorrow;

if(gotoStoreToday || gotoStoreTomorrow)
{
 // Code here runs if gotoStore today is true, or if

// gotoStoreTomorrow is true,
 // or if both of them are true
}

xnagamemaking.com 35

 That kind of one or the other OR is called exclusive or, XOR, but it isn't
used with these types of test in C#.

Combining Tests

We can combine multiple ANDs and ORs to make tests as complicated
as we want. To keep them clear like in mathematics we put parentheses
around tests to say which ones go first. Let's say that for whatever reason
we are making a program that runs some special code for weekends in
December, so we need to test in its code if today is Saturday or Sunday
and if the variable month is December.

if((today == Day.Saturday || today == Day.Sunday) && month ==
Month.December)
{
 // Code here runs if it's a weekend in December
}

The Day.Saturday and Sunday and Month.December are enums, a special
way to write values for variables to make them more readable. We won't
worry about that for now, let's just look at the tests inside parentheses in
the if statement, it tests true if today equals Saturday or Sunday. Then the
overall test is true if month is also equal to December. We could add
more and more conditionals and these types of tests can become long
and complex, but usually they'll be simple, just one or two conditionals.

More on if

Now that we have a pretty good understanding of the kinds of tests we
can do inside of the if statement and the basic syntax of it, let's look at a
few more little points about the if statement. For starters, if we just want
one line to execute if the if is true (or in the else block) we don't need
parenthesis, without parenthesis only the first line after the if is run.

if(testIsTrue)
 success = true; // Just one line after if
else

36 A Simple Introduction to Game Programming With C# and XNA 3.1

 success = false;

Nested ifs

Another issue with ifs is that we can nest them, put then inside of each
other.

if(today == Day.Monday)
{
 if(time < 12.00)
 {
 // Code here runs if it before 12 on Monday
 }
 else
 {
 // Code here runs if is after 12 on Monday
 }
}

These nested if's can be helpful for adding more branches and ways to go
inside of our code. The only tricky thing to watch out for with the
nesting is the else. The else must be set based on where it is in the
parenthesis or it matches up with the previous if. For example:

if(test1)
 // Test 1 is true doe line
if(test 2)
 // Test 2 is true do line
else
 // This line runs if test 2 is false, it doesn't have anything to do with test 1

Besides nesting another common thing to do with if statements is to put
them in a series. Here's an example:

if(test1)
 ...
else
if (test 2)
{
 // Code here runs if test 1 is false and test 2 is true.
}

xnagamemaking.com 37

We could keep adding these else-if's to the end of the if-statement. This
is a good way to choose among several options. If we have too many of
these, though; we might want to use a switch statement instead.

Switch Statement

A switch statement takes in a variable and then does different code based
on the value of the variable. This is helpful when we have a series of tests
based on a single variable. Here's an example:

static void Main(string[] args)
{
 int number;

 Console.Write("Enter a number between 1 and 5 : ");
 number = Convert.ToInt32(Console.ReadLine());

 switch (number)
 {

case 1:
 Console.WriteLine("One is a good number");
 break;

case 2:
 Console.WriteLine("Two is second best");
 break;

case 3:
 Console.WriteLine("Three is something");
 break;

case 4:
case 5:

 Console.WriteLine("Four and Five aren't bad");
 break;
 default:

Console.WriteLine("You didn't enter a number from 1-5");
 break;
 }
}

The switch statement works by stating a variable in parenthesis after the
switch:

38 A Simple Introduction to Game Programming With C# and XNA 3.1

switch(number)

Then following this it decides which code to execute based on its value.
In the brackets after the switch we have a number of cases. They take the
format:

case value:

So for our int variable we use the case:

case 1:
// Code to execute if variable is the value 1

break; // Stop executing code

Each case in our number example is just a different value for the
number, if the value is true the code after the : is executed until a break
statement is hit. If we want to have two or more cases execute the same
code we can just put two cases on top of each other, just like the case 4:
and case 5: in our example. The special case of default: at the end is just
what it says. If we went through the switch statement and never had a
correct case we'll run the code after the default. The cases are just like
multiple if's.

The switch statement isn’t used nearly as much as the if statement. It's
usually reserved for special cases where if we have a whole bunch of
different choices of code based on the value of just one variable. A use
that will come up for it a lot is when we read a variable for a key being
pressed at the keyboard, and we might do different code depending on all
the different keys that could have been pressed.

This covers the two types of branching. Next we'll look at looping.

xnagamemaking.com 39

Looping

For Loop

Many times in programming we need to repeat a block of code several
times. One of the ways to do this is a for loop. A for loop uses a counter
variable. It starts by initializing the counter variable, performs an
operation on the counter at each loop, and runs until the counter variable
passes some condition (test). This might be easiest to see with an
example, we'll add the following after the else statement above:

Console.Write(“Enter your age: “);
int age = Convert.ToInt32(Console.ReadLine());
Console.Write("Enter the current year: ");
int year = Convert.ToInt32(Console.ReadLine());

for (int i = 0; i < 5; i++)
{
 year++;
 age++;
 Console.WriteLine("In the year " + year.ToString() + " you'll be " +
age.ToString() + " years old.");
}

An example run of this program is:

Enter you age: 105
Enter the current year: 2009
In the year 2010 you'll be 106 years old.
In the year 2011 you'll be 107 years old.
In the year 2012 you'll be 108 years old.
In the year 2013 you'll be 109 years old.
In the year 2014 you'll be 110 years old.

This addition prints out the user's age for the next five years. The for
loop starts by creating the counter variable i and setting it to zero, and
will continue to loop while i is less than five, and at each loop run it adds
one to i.

40 A Simple Introduction to Game Programming With C# and XNA 3.1

Notice that it is common in programming to count using zero based
indexing which means instead of starting counting at 1, such as 1,2,3.. we
start at zero 0,1,2 ... If we had three objects, the first would be numbered
0, the second would be numbered 1, and the third would be number 3.
So to count to five we start with i = 0 and it counts 0,1,2,3,4 – which is
five loops total. This starting at zero can take a little getting used too, but
it's good to get into the habit of counting this way since when we get to
arrays we'll see you'll have to use zero-based indexing.

We see that the for loop uses the counter variable and consists of three
parts.

In the first part we initialize the counter variable, usually just setting it to
zero, as in our int i = 0;

In the second part we define an exit condition for the for loop. Exit
conditions are important in looping, an ext condition is just a way to
make sure the loop stops at some point and doesn't repeat forever. The
exit condition is a statement that says the loop is over. Usually with for
loops our exit condition is just testing if our counter variable has gone up
to a certain number.

The third part we perform an operation on the counter variable. This is
usually just adding one to the counter. The syntax for these three things
is:

for(counter variable initialization; counter variable test; counter variable
operation)

Note the placement of the semicolons, its important to have them in the
proper places for them to work correctly.

xnagamemaking.com 41

Multiple for loops

We can have multiple for loops together, this can be helpful as we go
through multiple things at once. Here's a little example that will print out
a little 10 by 10 grid of numbers.

static void Main(string[] args)
{

for (int i = 0; i < 10; i++)
{

for (int j = 0; j < 10; j++)
Console.Write(j.ToString());

Console.Write("\n");
 }
}

The output or this program is:

0000000000
1111111111
2222222222
3333333333
4444444444
5555555555
6666666666
7777777777
8888888888
9999999999

For loops are very common and occur in every procedural language, such
as C++ and Java, they are handy for running code a specific number of
loops. But what if we don't know how many times we want the loop to
run? The loop we can use instead of the for loop is the while loop.

while loop

A while loop is another loop type that is simpler than the for loop. All
that is needed for a while loop is have a conditional, test, and while that
test is true the while loop will keep executing. The basic format is simple:

42 A Simple Introduction to Game Programming With C# and XNA 3.1

while(test)
{
 // Test is true, execute code here
} // End of while loop, go back up to test

Let's create a small example, a program that asks the user to guess a
number, and then keeps asking (looping) for another guess until the user
guess the correct number:

static void Main(string[] args)
{

int secretNumber = 3;

Console.WriteLine("Guess the number game, enter a number between 1
and 10: ");

int guess = Convert.ToInt32(Console.ReadLine());

while (guess != secretNumber)
{

Console.WriteLine("Wrong, guess again : ");
guess = Convert.ToInt32(Console.ReadLine());

}
Console.WriteLine("Correct!");

}

A sample run of this is:

Guess the number game, enter a number between 1 and 10:
5
Wrong, guess again:
3
Correct!

This program picks a secret number and will continue looping while the
number inputted does not match it. (Remember != means not equal.)
This program could loop 10 times 100 times, or a 1000 times (as long as
three is not guessed.) The one thing to watch out for is that the loops
have an exit condition, a guarantee that the loop will not run forever. If
we wrote a loop that had no way of exiting, such as:

xnagamemaking.com 43

static void Main(string[] args)
{

while (true)
{

Console.WriteLine("We're looping forever ");
}

}

It will never end. When this happens in the best cases this just hangs up
the program. In others it causes everything to crash. We always want
some way to exit. Besides just the initial test condition, there are two
other ways that we can control how the loop runs, the break and
continue statement. Both only work inside of loops, and work for for's
and while's. The continue statement says to ignore everything below it in
the run of the loop, and go back to the beginning. For instance, look at
the following code:

int test = 0;
while(test < 10)
{
if(test == 5)
 continue;

 Console.WriteLine(test.ToString());
 test++;
}

The output for this is:

012346789

The above program (which is similar in it's working as a for loop) prints
out the numbers 0 to 9, with the exception of 5. The if test is equal to 5
the break happens and the rest of the loop is skipped and the loop goes
back to the beginning.

44 A Simple Introduction to Game Programming With C# and XNA 3.1

The break statement simply exits the loop directly. The following loop
will print out the numbers 0-9, though the test on the while loop is
always true the loop will exit when the test number goes above 9:

int test = 0;
while(true)
{
 if(test > 9)
 break;
 Console.WriteLine(test.ToString());
 test++;
}

The output is simply:

0123456789

When test is over 9 the break statement is called and the loop exits.

do-while

Let's go back a little bit to our secret number guessing game.

int guess = Convert.ToInt32(Console.ReadLine());

while (guess != secretNumber)
{

Console.WriteLine("Wrong, guess again : ");
guess = Convert.ToInt32(Console.ReadLine());

}
Console.WriteLine("Correct!");

In this program if the user enters the correct number the test for the
while loop (guess != secretNumber) evaluates to false on the first try, and
all of the code inside the while loop is skipped. Let's say we wanted the
code inside a while loop to execute at least once, no matter what. For this
we use a do-while loop, it always executes at least once because the test
comes at the end of the loop. For example let's look at a different (and
worse) way we could have written the guessing number program.

xnagamemaking.com 45

static void Main(string[] args)
{

int secretNumber = 3;

Console.WriteLine("Guess the number game");
int guess;

do
{

Console.WriteLine("Enter a number between 1 and 10: ");
guess = Convert.ToInt32(Console.ReadLine());

} while(guess != secretNumber);

Console.WriteLine("Correct!");

}

A sample run of this is:

Guess the number game
Enter a number between 1 and 10: 5
Enter a number between 1 and 10: 3
Correct!

This program also keeps looping until the correct number is guessed, and
the loop will be entered at least once.

Goto statement

Just a little note, there is one more kind of branching that we can do, and
that is the use of the goto statement. The goto is an older method to
jump around code, you mark different points of the program and then
use goto to jump around to those points. We won't cover it here as we
really shouldn't be using this, it quickly creates “spaghetti code,” code
that jumps around a lot and is mostly unreadable.

46 A Simple Introduction to Game Programming With C# and XNA 3.1

Finding the Gold

When we left our “Finding the Gold” game we had put in the
functionality to let the player enter their name and choose a door:

Console.WriteLine("Welcome to the Find the Gold Game!\n What is your

name?");

string name = Console.ReadLine();

Console.WriteLine("Hello, " + name + ". Which door do you choose, 1, 2, or

3?");

int door = Convert.ToInt32(Console.ReadLine());

Console.WriteLine("You chose door " + door.ToString());

Now let's add in three choices. If the player chooses door 1 we'll let the
player then choose to open box one or two. If the player chooses one
we'll tell them it's empty, if they choose door two we'll tell them they
found a bag of gold. So after the above add the following:

if(door == 1)
{
 Console.WriteLine(“You found two boxes, which do you choose?”);

 int box = Convert.ToInt32(Console.ReadLine());

 if(box == 1)
 Console.WriteLine(“It's empty. You lose!”);
 if(box == 2)
 Console.WriteLine(“You found a bag of gold!”);
}

The output of this part of the program is:

You choose door 1
You found two boxes, which do you choose?
2
You found a bag of gold!

xnagamemaking.com 47

Next we'll have it if the player chooses door two we'll assume they fell
into a hole. We'll print “you're falling” five times:

if(door == 2)
{
 for(int i = 0; i < 5; i++)
 Console.WriteLine(“You're falling!”);
}

The output of this part of the program is:

You choose door 2
You're falling!
You're falling!
You're falling!
You're falling!
You're falling!

As an option for door three you could tell the player the gold is in a safe
have them need to undo a combination to get to it. Then you could
insert the guessing game code to have them guess a number to find the
gold.

Summary

Now we are getting closer to be able to do really interesting things in
code. We looked at branching using the if-else and case statements, and
how to create loops with the for loop and the different whiles. In the
next chapter we'll look at some more advanced data types and how to
divide up code with functions.

48 A Simple Introduction to Game Programming With C# and XNA 3.1

xnagamemaking.com 49

Chapter 4: Advanced Data Types and Functions

What we've gone over in the preceding chapters may not have been
super exciting, but we're well on our way to having the skills to be a game
programmer. We've looked at how programs are organized, simple
variables, operators and a few other instructions, and branching and
looping. In this chapter we’re going to go to a more advanced level. We'll
make our code more powerful by going over some more complex,
advanced data types: strings, arrays, lists, and structs. Then we'll look at
ways to modularize code by creating functions to put blocks of code in.

 Learn about strings and how they work in C#

 Learn how to use arrays and collections

 Learn how to use structs

 The basics of functions

Strings

We discussed strings in the second chapter, but since they are so
important we'll talk a bit about them again here. One of the most basic
things to deal with in any programming language are strings. Strings, if
you recall, are just lists of characters. This sentence is a string, even this
entire book is a string, just a whole bunch of characters. Since we are all
about manipulating data in computer programs and data is usually in the
form of strings, they are very important. Pictures, such as bitmaps, are
stored as strings, just long sequence of characters containing numbers for
each color of every pixel. 3D Models likewise are just long strings that
contain various kinds of information about the model. Strings are a major
data structure in programming.

Strings have always been important in programming, but before .Net
working with strings could get a bit too complex. Back in the days of C
all of the basic string functionality was about just simple blocks of
memory and some basic functions for manipulating them. C++ brought

50 A Simple Introduction to Game Programming With C# and XNA 3.1

better strings that could do more things and a distinct string class was
created. But these strings still weren't enough for a lot of programmers,
so different people started making different string classes and functions
of their own. Converting and keeping track of all these different strings
wasn't simple and unnecessarily confusing. Instead of all that trouble in
the .Net framework we're given a single robust and good String class to
work (which is C#'s string variable type.) The .Net string class has a lot
of functionality, and there are many helper functions to turn strings to
something else (such as numbers) and back. This single string class is one
of the major components of C# and .Net.

To declare a string we just use the string keyword:

string stringName;

Where stringName is the name we want to call that string. Remember
actual strings are put in double quotes:

string helloString = “Hello”;

Like we said, strings in C# are just another way of using the String class
in .Net. The nice thing about this is that if we ever need to program in a
different .Net language, such as Visual Basic.NET or Managed C++, the
strings will work just the same. If you do a search for Strings in the
Visual C# Express documentation you'll find that there are many things
you can do with strings. We'll look at just a few of the most commonly
used ones.

Concatenation

One of the most basic operations we can perform on strings is to
combine two strings into one. The most common way to do this is if we
have two strings to just put the second string at the end of the first one.
This attaching of strings one at the end of the other is called
concatenation. Here is an example:

xnagamemaking.com 51

static void Main(string[] args)
{

string name;
Console.WriteLine("Hello, what's your name?");
name = Console.ReadLine();
string outString = "Hello, " + name + ", nice to meet you.";
Console.WriteLine(outString);

}

A run of the program looks like this:

Hello, what's your name?
Curtis
Hello, Curtis, nice to meet you.

The first part of this program declares a string called name and then
reads the user's name into it. The third line of the program:

string outString = "Hello, " + name + ", nice to meet you.";

concatenates the strings “Hello”, name, and “nice to meet you” and
stores the new string in the variable outString. The plus symbol (+) is
used as the concatenation symbol. And like the unary addition shortcut
we can do the following to concatenate:

string helloString = “Hello”;
helloString += “, nice to meet you”;
// helloString now has “Hello, nice to meet you”

Concatenation is our way of combining strings.

(Note doing concatenations on the string class is not very efficient and
the .Net framework has a special StringBuilder class that does them
better, but we won’t worry about that here.)

Comparing

Another simple thing to do with strings is to compare if two are equal.
Strings can be compared in conditional tests using the == sign and !=
(not equals) sign similar to numbers. Here's an example:

52 A Simple Introduction to Game Programming With C# and XNA 3.1

static void Main(string[] args)
{

string name= "Charlie";
if (name == "Charlie")

Console.WriteLine("The name here is Charlie");
if (name != "Mike")

Console.WriteLine("The name is not Mike");
}

The output for the above is:

The name here is Charlie
The name is not Mike

This test is case sensitive, so the following test will be false:

string name = “Charlie”;
if(name == “charlie”)

// This test is false

To ignore case sensitivity we can use the .ToUpper() or .ToLower()
methods on the strings. These methods convert a string to all upper case
or lower case. The following test will be true:

string name == “Charlie”;
if(name.ToLower() == “charlie”.ToLower())

// This test is true

Converting

Like we mentioned earlier in the book, it's easy to convert strings to and
from other data types. Let's look first at converting numbers to strings.

int goodNumber = 5;

string outString = “I thing a good number is “ + goodNumber.ToString();

xnagamemaking.com 53

This program converts the goodNumber integer to a string. This isn't
anything special for integers, all variables and data structures in C# can
be converted to a string this way. Anything at all in C# (and the .Net
framework) that you want converted into a string just put the .ToString()
after it. Going the other way (which we saw at the end of chapter two)

int goodNumber;

Console.WriteLine("Enter a good number");
string numberString;
numberString = Console.ReadLine();
goodNumber = Convert.ToInt32(numberString);
Console.WriteLine(goodNumber.ToString() + " is a good number.");

Here’s an output:

Enter a good number
25
25 is a good number

If we run this program it will just ask the user for a number and then
print it back out. The first few lines here just have the user enter an
integer and store it in the string numberString. The line:

goodNumber = Convert.ToInt32(numberString);

changes our string into a an integer. As you type this line in notice that
after typing the period at the end of Convert a whole list of options
comes up of things we could try to change the string into, such as
ToBoolean() (to convert to a bool) or ToSingle() (which is used to
convert to a float). The reason the names of the types in the Convert
don't match up exactly in name to our C# data types is that the Convert
is part of the .Net framework, not C# specifically, so the names for the
data types are the .Net names, not the C# names.

54 A Simple Introduction to Game Programming With C# and XNA 3.1

Now trying to run the program again instead of entering a number enter
the string “hello”. You'll get the following:

Enter a good number
hello

Unhandled Exception: System.FormatException: Input string was not in a
correct format.
 at System.Number.StringToNumber(String str, NumberStyles options,
NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)at
System.Number.ParseInt32(String s, NumberStyles style, NumberFormatInfo
info)at StringTest.Program.Main(String[] args)

Entering a string that won't convert to an integer creates an exception, an
error that popups up when running the program that basically says
something went wrong. Exceptions are called runtime errors, since they
occur when the program is running. These are different than compile
time errors, errors that occur from compiling the program. We won’t
worry about handling exceptions here, for now just be careful about
converting strings.

Concatenation, comparing, and converting are three important things we
can do with strings. Again there are a lot more things you can do with
them (you can check the documentation) but we'll move on to our next
advanced data type, arrays.

Arrays

Let's say that we're making a space ship game (which we'll do in the next
part) and in it we have several ships and we need to keep track of the
speed of each one. We could try creating float variables for each ship's
speed:

float ship1Speed;
float ship2Speed;
...
float ship58Speed;

xnagamemaking.com 55

But this would quickly get annoying, and would take up a lot of code
space having them all typed in. It would be nice if we could create a
single variable that holds multiple values. That is what an array is, an
array is a variable that holds a list of values of the same type. We mark
that a variable is an array by using straight brackets, [] and the individual
values stored in an array are called the elements or the members of the
array. To create an array to hold all of out ship's speeds we would just
say:

float[] shipSpeed;

This says to make a variable shipSpeed that holds multiple values of
floats in a list. Arrays are a little bit trickier than usually variables. So let's
look at a few important aspects of them.

Initializing arrays

There are a few ways we can set what's in an array initially and its size
(how many members it has.) The first way is to declare a list of elements
to put in it when we declare the array. To create a shipSpeed array with
that holds five values, 100 to 500, we would just say:

float[] shipSpeed = { 100.0f, 200.0f, 300.0f, 400.0f, 500.0f }

But what if we didn't know what values we wanted to store in the array?
Instead of listing them out we can just give a number of variables to
store, a size of the array:

float[] shipSpeed = new float[5];

The above line creates an array with spots to hold five floats. The new is
used because an array is what is called a reference type. The precise
meaning of this is a little technical. It basically says that the variable itself
(shipSpeed) doesn't store all the floats in memory itself, it just contains an
address to a memory location, a reference to some spot in memory. So

56 A Simple Introduction to Game Programming With C# and XNA 3.1

when we use a reference type we put the new keyword in front of it to
create the location in memory for it. (If that explanation doesn't make
sense don't worry about it, for now just think that for reference types
(like an array) we sometimes have to use new when defining the variable.)

 Accessing members

We just saw how to create the array, but how do we access and modify
the individual members of the array? We simply in the brackets following
the array put the number of the element we want.

float[] shipSpeed = { 100.0f, 200.0f, 300.0f, 400.0f, 500.0f }
float speed1 = shipSpeed[0]; // We just put 100.0f in speed1
shipSpeed[1] = 25.0f; // Now the value of the second element is 25.0f instead
// of 200.0f;

One thing to notice here is that to access the first element instead of
using 1 we started with 0. This is because arrays use zero based indexing.
As we mentioned before this means that when we count things we call
the first thing 0, the second thing 1, and so on. So if we had, say, four
elements, we would count them 0,1,2,3. This can be a bit unusual at first
when working with arrays to think like if we want to change the third
element we refer to it as number 2, but after a while it becomes natural.

What if we try to access a member of an array and specify a number too
but or small for it, like the following:

float[] shipSpeed = { 100.0f, 200.0f, 300.0f, 400.0f, 500.0f };
float speed1 = shipSpeed[12];

In this program we try to access the thirteenth element (number 12)
which doesn't exist. If you run it you'll get another exception. So you
have to be careful when accessing array to make sure you are in range. To
help with this you can call the .Length function on an array to see how
many are in it:

xnagamemaking.com 57

float[] shipSpeed = { 100.0f, 200.0f, 300.0f, 400.0f, 500.0f };
int size = shipSpeed.Length; // size is the number 5

Iterating an Array

Sometimes when working with arrays we want to do something to every
element in the array. If we go through every element in an array and do
something to it (such as assign them a value) we are iterating through the
array. To do this we can use a for loop. Let's assign the numbers 0, 100,
200 … to ten ship speed elements:

for(int i = 0; i < shipSpeed.Length; i++)
 shipSpeed[i] = i * 100;

Besides using the regular for loop C# also has a special kind of for loop,
a foreach loop. The foreach is just a simple way to go through each
element of an array as long as we don’t modify it. Say we want to print
each ship’s speed. We would just code the following:

foreach(float speed in shipSpeed)
 Console.WriteLine(speed.ToString());

The syntax here is pretty simple to figure out, we just specify the type and
the array to iterate through, then we can use every element.

Multi-dimensional arrays

Besides having arrays that hold a single row, list, of data we can make
rectangular arrays; arrays that hold multiple rows of data. The following
will create three rows with each row having two floats in it:

float[,] rectangleArray = new float[3,2];
// Assign an element:
rectangleArray[1, 0] = 5.0f;

58 A Simple Introduction to Game Programming With C# and XNA 3.1

This creates a rectangular array, but we can also make jagged arrays. That
is an array where each element is itself an array. This way the
multidimensional array doesn't need to be rectangular, each array can be
of a different size (that's why it's called jagged.) Here's an example:

float[][] jaggedArray = new float[3][];

// Give row zero an array of 2 elements
jaggedArray[0] = new float[2];
// Give row one an array of 3 elements
jaggedArray[1] = new float[3];

// Assignment:
jaggedArray[0][1] = 5.0f;

Collections

Arrays are the most common way in computer languages to handle lists
of elements. But in C# we other methods of doing this called
Collections. One of the most common collections is called a list. It is like
an array except we don't have to worry about setting a specific size to it,
we just add and remove elements to it as we see fit. Here is an example
that makes a list of numbers:

List<int> integerList = new List<int>(); // Make a list of int type
integerList.Add(5); // Add the number 5 to the list
integerList.Add(6); // Add the number 6 to the list
int firstInt = integerList[0]; // firstInt now has the value 5

We'll being lists more in the 2D part. The syntax for them is like the
arrays. The big difference is that for lists we add items as we go. We can
see where this will be useful when we keep a list of items that we add too
periodically through the game. In the next part in the 2D game as we fly
our ship and we need to create new enemies we will create them and add
them to an enemy ship list.

xnagamemaking.com 59

Structs

Moving on from arrays let's say that in our ship game we wanted to store
more information about a ship than just its speed. We also want to store
a ship id which is an integer, and a ship type which is a string. We could
create three separate variables for each ship and just note that they are all
describing the same object, but it would be easier if we had a structure
that did this for us. C# does give us just that, a struct, which holds
multiple variables together. A struct for the ship variables just described
would be:

public struct ship
{
 public int id;
 public float speed;
 public string type;
}

The basic syntax is just

public struct structName
{
 public variableType1 variableName1;
 public variableType2 variableName2;
 ...
}

We put the name of the struct first and then in the brackets after it we
put a list of the variables in it (we put public in front of each variable to
make it accessible, we'll go into more detail about this in the next
chapter.) To use the struct we declare a variable of our struct type, and to
access individual members (variables in it) we use a period to specify it.
All of this is easiest seen with an example:

public struct ship
{

public int id;
public float speed;
public string type;

60 A Simple Introduction to Game Programming With C# and XNA 3.1

}

static void Main(string[] args)
{

ship myShip; // Just created a ship structure
myShip.id = 33; // Give it an id of 33
myShip.speed = 2200.0f; // Give it a speed of 2200
myShip.type = "class 1 ship"; // Give it a type

Console.WriteLine("My ship's type is " + myShip.type.ToString());
Console.WriteLine("Its speed is " + myShip.speed.ToString() + " and its
id is " + myShip.id.ToString());

}

The output is:

My ship's type is class 1 ship
Its speed is 2200 and its id is 33

This program uses the ship struct to create a variable of the ship type
(myShip) and then assigns each of its variables a value. You might notice
that this grouping of variables together to describe a specific object (in
this case the ship) sounds like Object-Oriented programming. Structs are
the beginning of Object-Oriented programming; while they are in
structured languages like C, are like objects. The difference is that structs
usually contain just variables while classes (objects) contain variables and
functions (actions to act on the data)

Example Program

Strings, arrays, and structs are three advanced data types, and while we
went over each of them, let's make a simple example program that uses
all three together. The program, called shipList, will store an array of ship
structs and the user will enter info in on each ship and then it will print
out a summary of everything that was entered. Here's the code:

 public struct ship
 {

public int id;

xnagamemaking.com 61

public float speed;
public string type;

 }

static void Main(string[] args)
{

// Write out what this program is
Console.WriteLine("Ship inventory program.");

// Get the total number of ships to record
Console.Write("Enter how many ships do you want to record: ");
int totalShips = Convert.ToInt32(Console.ReadLine());

// Create a ship array
ship[] shipArray = new ship[totalShips];

// Go through each ship and get some info on it
for (int i = 0; i < shipArray.Length; i++)
{

Console.Write("Enter id of ship : ");
shipArray[i].id = Convert.ToInt32(Console.ReadLine());

Console.Write("Enter speed of ship : ");
shipArray[i].speed = Convert.ToSingle(Console.ReadLine());

Console.Write("Enter type of ship : ");
shipArray[i].type = Console.ReadLine();

 }

 // Now print out the info on each ship

 Console.WriteLine("Ship info: \n");
foreach (ship shipElement in shipArray)
{

string printString = "Ship id: " + shipElement.id.ToString() + "\n";
printString += " type is " + shipElement.type + "\n";
printString += " speed is " + shipElement.speed + "\n\n";
Console.WriteLine(printString);

}
}

An example run of this program would be:

Ship inventory program.
Enter how many ships do you want to record: 2

62 A Simple Introduction to Game Programming With C# and XNA 3.1

Enter id of ship : 33
Enter speed of ship : 2000
Enter type of ship : Class I
Enter id of ship : 45
Enter speed of ship : 2200
Enter type of ship : Class II
Ship info:

Ship id: 33
 type is Class I
 speed is 2000

Ship id: 45
 type is Class II
 speed is 2200

The comments describe what's going on in each part of the code. A
couple of points: The array itself is an array of the ship type. Notice that
the user chooses the size of the array (when entering the totalShips data.)
Like we said the size of the array can be determined at run-time (when
the program is running) instead of compile-time (when the program is
being compiled.) We also use the escape key “\n” to create new lines
when we need them. Whenever we use Console.WriteLine we can create
new lines by inserting \n.

Functions

What we can do in our programs is getting more advanced, let's keep
moving and go over how functions work in C#. Functions, if you recall
from chapter 1, are blocks of code set aside that can be called to run
when needed. The concept is pretty simple, when writing code one of
our goals should be never to duplicate code, that is we don't want to
write the same block of code twice in the same program. There are a lot
of reasons for this, not duplicating code saves space, reduces errors (since
it keeps the total amount of code down), and is easier to make changes
(when we need to change code we only have to change it at one spot.) So
we never want to duplicate code, and functions are a way to do that.

xnagamemaking.com 63

Let's look at a simple example of a function and then go through it line
by line:

class Program
{

static void printHello()
{

Console.WriteLine("Hello everybody!");
}
static void Main(string[] args)
{

printHello();
Console.WriteLine("I said,");
printHello();

}
}

The output of this is

Hello everybody!
I said,
Hello everybody!

The first part of this program defines the function:

static void printHello()
{

Console.WriteLine("Hello everybody!");
}

The name of the function is printHello, and we can tell it is a function
because it has the parenthesis () following it. The static void in front of
printHello, are descriptions of the function. We won't worry about what
the static means for now, we'll deal with it in the next chapter. The void
tells us a return-type, and we'll cover that briefly.

Inside of Main, which is a function itself, we tell the printHello function
to run, we do this by using the name of the function as an instruction.
Each

64 A Simple Introduction to Game Programming With C# and XNA 3.1

printHello();

Tells the compiler to go to the printHello function and do all of the
computer code in it. In our program every time we say printHello() the
text “Hello everybody!” is printed on the console, because the code
direction goes to the printHello function.

Passing Variables

Putting code into little blocks of functions is good, but what about
variables. If we put a variable in our Main function and then call another
function the other function won't have access to the variable. For
example, if you try running the following code you'll get an error
message:

class Program
{

static void printNumber()
{

Console.WriteLine("Printing number: " +
 number.ToString()); // Error – number isn't here
}
static void Main(string[] args)
{

int number = 5;
printNumber();

}
}

The error message says “number does not exist in the current context”
referring to the printNumber function. Number is in Main, not
printNumber, so printNumber can't use it. One solution to this is to
make number a global variable, which means that every function in the
whole program can access it. To make the number variable global we put
it outside of our functions:

class Program
{

xnagamemaking.com 65

 static int number;

 static void printNumber()
 {
 Console.WriteLine("Printing number: " + number.ToString());
 }
 static void Main(string[] args)
 {
 number = 5;
 printNumber();
 }
}

(The static in front of the number can be ignored) This program will
compile and run just fine, but we don't want to make variables global if
we don't have to. Instead of doing this what we can do is pass the value
of number to printNumber. We can pass the number to it like this:

class Program
{
 static void printNumber(int numberToPrint)
 {
 Console.WriteLine("Printing number: " + numberToPrint.ToString());
 }
 static void Main(string[] args)
 {
 int number = 5;
 printNumber(number);
 }
}

The output:

Printing number: 5
Press any key to continue . . .

In this program we took the number variable and passed it into the
function. Our function knew what variables to take because we made a
parameter list for it. The format for this is:

void functionName(type varName, typevarName, ...)

66 A Simple Introduction to Game Programming With C# and XNA 3.1

We can specify as many variables as we like to pass. Note that we're
passing the value of the variable, not the variable itself. For instance the
following program:

class Program
{

static void printNumber(int numberToPrint)
{

numberToPrint = 7;
Console.WriteLine("Printing number: " +
 numberToPrint.ToString());

}
static void Main(string[] args)
{

int number = 5;
 printNumber(number);
 Console.WriteLine("Printing number: " + number.ToString());
 }
}

Will have the output:

Printing number: 7
Printing number: 5

Changing the number to 7 in the function didn't affect the number in
Main.

Returning a value

If we want to let a function change a variable we can pass it in by
reference. To do this we add the ref keyword in front of the variable in
the function parameter list.

class Program
{

static void printNumber(ref int numberToPrint)
{

numberToPrint = 7;

xnagamemaking.com 67

Console.WriteLine("Printing number: " +
 numberToPrint.ToString());

}
static void Main(string[] args)
{

int number = 5;
printNumber(ref number);
Console.WriteLine("Printing number: " +

 number.ToString());

}
}

This program has the output:

Printing number: 7
Printing number: 7

Since we put a ref in front of the variable when passing it the actual
variable place in memory was passed, and the number itself changed.

So if we want to have the function modify some data for use in other
parts of the program we can pass it by ref. Besides passing variables by
ref a better way to get data from a function is to have the function return
a value. The same way we can pass data into a function we can also have
a function pass it out. We do this by specifying a return type; the void in
front of the functions we've written so far is actually a way saying we're
not returning anything. The void means nothing. We can replace the void
by a data type. For instance:

class Program
{

static int printNumber(int numberToPrint)
{

numberToPrint = 7;
 Console.WriteLine("Printing number: " + numberToPrint.ToString());
 return numberToPrint;

}
static void Main(string[] args)
{

68 A Simple Introduction to Game Programming With C# and XNA 3.1

 int number = 5;
 number = printNumber(number);
 Console.WriteLine("Printing number: " + number.ToString());

}
}

This program has the output:

Printing number: 7
Printing number: 7

Our function printNumber has a return type of int:

static int printNumber(int numberToPrint)

The function has in it the keyword return, which says to stop the
function and return that value:

return numberToPrint;

Anything after the return is ignored by the compiler. If you change the
printNumber function to:

static int printNumber(int numberToPrint)
{

numberToPrint = 7;
Console.WriteLine("Printing number: " + numberToPrint.ToString());
return numberToPrint;
Console.WriteLine(“I'll never print”);

}

That last WriteLine will never show up on the screen.

xnagamemaking.com 69

Summary

So we've got the basics of how functions work and before that we looked
at a few more advanced data types: strings, arrays, and structs. Stucts are
a precursor to objects in Object Oriented programming, so let's move on
to the next chapter where we start making objects in our program.

70 A Simple Introduction to Game Programming With C# and XNA 3.1

xnagamemaking.com 71

Chapter 5: Object-Oriented Programming

In the first chapter we briefly mentioned the Object-Oriented
programming (OO) paradigm. We talked about how C# is an Object-
Oriented language. C# is actually what is called a pure Object-Oriented
language, in that everything is an object. In C# the number 5 is an object,
the different art resources, and everything we work with is an object. In
this chapter we'll take a closer look at Object-Oriented programming. We
will cover:

 The main concepts of OO programming

 How OO programs are designed

 How to create and use classes of objects

Object-Oriented Programming 101

Objects are everywhere in life. When using the term object here it means
the same thing as in “real” life. This book is an object, the computer you
work with C# on is an object, etc. Object-Oriented programming is an
attempt to take these objects we find in the real world and translate them
into computer code. This works for most types of programming, but
really makes sense for game programming. When making games it's easy
to think of things in terms of objects, since our games are full of “real”
objects. Like in the example we mentioned in chapter one with the racing
game; in making a racing game we can have the car be an object,
opponents be objects, the terrain be an object, etc.

This thinking of the game in terms of objects is helpful, but how do we
write the code to create objects? What we'll be doing to create objects is
to create classes. Classes are templates for objects, they define the
different attributes, variables and functions the object has. Classes are
not objects themselves; they are descriptions for types of objects. Similar
to the animal kingdom phylum, where classes are used to describe type of

72 A Simple Introduction to Game Programming With C# and XNA 3.1

animals, like there is a class of animals called lions. But an individual lion,
such as the lion at the local zoo, is a lion object while the class lion is not
an individual object. The actual objects, like the lion at the zoo, are called
instances of an object. Classes are the heart of Object-Oriented
programming; all of our coding in C# will be in defining classes.

Classes are a combination variables and functions (the functions are
called methods.) The variables and methods of a class are called the
members of the class. OO programming works by taking an object in the
real or game world we want to model (instead of a car let's use the
example of a spaceship) then defining it in terms of attributes, variables
holding information about it (like it's speed, position), and what the
object does (like slow down, turn left, turn right).

Classes are usually defined in their own .cs source files. The declaration
for a class is:

access-specifier class className
{
 // variables

 // methods
}

A basic ship class would be like:

public class SpaceShip
{
 private float positionX;
 private float positionY;
 private float speed;

 public IncreaseSpeed()
 {
 speed += 10.0f;
 }
}

xnagamemaking.com 73

Again, this only defines a template for an object, but doesn’t create one.
To create an instance of the SpaceShip class we declare a variable of the
SpaceShip type and use the new keyword to create it. Then we can access
members with the public keyword in front of them just like we do with a
struct.

SpaceShip ship;
ship = new SpaceShip();
ship.IncreaseSpeed();

Going back to the class definition, the first question when looking at this
might be what all of those public and private words are. One of the
major concepts of OO programming is encapsulation, grouping together
data and methods (creating objects.) One of the issues with encapsulation
is who can access the data. When we have a variable like the ship's speed
we probably don't want other objects going in and changing it. If we had
a player that controlled the ship it would make sense to allow the player
to tell the ship to increase in speed (call the IncreaseSpeed method) but it
wouldn't be good to allow the player class to just set the speed to some
arbitrary values, like change it from 0 to 25 (especially if we have physics
setup.) To set who can modify what with our class we set access
specifiers. For the class and every field and method we give it the
specifier of private, public, or protected. Private means nothing outside
of the class can do anything with it. With the ship's speed being private
no one but the ship can access its speed variable. Public says that anyone
else can access it. The ship's IncreaseSpeed method is public, which
means any other object can tell the ship to increase its speed. (We'll look
at what protected means in moment.) Usually we have all of our data for
a class be private and all of its methods be public. This way each class
manages its own data (state), but can take messages (have methods
called) by other objects.

In programming terms, objects can be thought of as a group of data and
actions. This makes sense, as a common way to think about classifying
objects is to think about they're characteristics and what they do. For
instance, we classify a Ferrari as different from other cars because of
attributes it has (different engine, body) and that it can perform actions
differently than other cars (go faster.) The data and functions (actions)

74 A Simple Introduction to Game Programming With C# and XNA 3.1

are called the members of the object, and the variables are called member
variables or properties. The functions contained in the object are called
methods of the objects, though a lot of times people will refer to them as
member functions. All of these members, variables and methods, are
defined in classes.

Where the work is done

When I first learned about OO programming the most confusing wasn't
defining classes or setting them up, but figuring out where the work is
actually done. We can set up a bunch of objects and methods but how
are these used. In most OO programs the main function does almost
nothing but create a single object and start it (such as in a windows form
application the main function just creates a form class.) So it can be hard
to tell how the code is executed.

We can tell how code runs by the arrangement of objects. A common
method for organizing programs is to have one (or only a few) main class
that everything else is contained in. In XNA we have a Game class. This
class holds all of the objects for our game. Inside the main class we create
objects like game objects (players, enemies, and so fourth) and objects to
handle playing our game, such as a keyboard object to read in key input
and graphics device object to handle drawing onscreen. After the objects
are created in the game class they run and are updated in the main game
loop. To tell how a game is being run we can look in it's main loop and
see all of the main objects and how they are being used.

Note that this business of how to “arrange” objects in our programs is
pretty controversial. A lot of programmers want to make big objects that
contain a lot of stuff so that they can have the object do a great variety of
things. But when objects grow too huge, like having hundreds of
members and thousands of lines of code they can be confusing and hard
to work with. On the other hand, writing a program with hundreds of
small objects in it can make things just as difficult. There is a huge variety
and debate on how to organize objects in programs.

xnagamemaking.com 75

One thing to watch out for is the tendency a lot of amateur developers
have to make wrappers for other objects. Many people want to make
helper classes that aren't really needed. For example, in XNA there is a
class Texture2D to handle loading pictures for sprites. Some might want
to create a Picture class that will be the same as the Texture2D; it will
have a Texture2D member and every method of the Picture class will just
call the method from Texture2D. Making these wrapper classes is
unnecessary and makes code more confusing. (There are special reasons
for sometimes writing wrapper classes, like when making an advanced
3D engine, but most people who make them do so when they're not
needed).

Inheritance

Getting back to our space ship class, let's say in our program we'll
actually have two kinds of ships, a cruiser ship and a fighter ship. They
will have many unique differences, like the fighter ship will have a laser
cannon but the cruiser won't. But they will also have a lot of common
functionality. Instead of repeating a lot of duplicate code to make two
totally separate ship classes we can make a single base class called
SpaceShip. Then we can make two more ship classes, CruserShip and
FighterShip that both inherit from the SpaceShip class. This means the
cruiser and fighter classes have everything that the SpaceShip class does
but with some extra features too. The code for the fighter ship could
look like:

public class SpaceShip
{
 private float positionX = 0.0f;
 private float positionY = 0.0f;
 private float speed = 100.0f;

 public IncreaseSpeed()
 {
 speed += 10.0f;
 }
}

public class FighterShip : SpaceShip
{

76 A Simple Introduction to Game Programming With C# and XNA 3.1

 private int ammo = 20;

 public FireCannon()
 {
 ammo--;
 }
}

The parent class that we are inheriting from is called the base class. The
syntax for inheriting from a class is:

public class NewClass : BaseClass

Then we can make a FighterShip that has all the functionality of the
SpaceShip too:

FighterShip ship = new FighterShip();
ship.FireCannon();
ship.IncreaseSpeed();

This is the basics on how to inherit from a class. One more note: if we
have a member of a class that we want to be private except for the classes
that inherit from it, we give it the protected access specifier.

Creating Classes

The previous sections have been a lot of theory, let's get to writing some
code. Starting in the second part of this book, we'll begin to make a little
space ship fighting game, where the player controls a ship and fights off
enemies that fly by. The making of the player would seem to be the first
thing we should create, and it makes sense to do so, but here why don't
we start making a class to handle enemy ships that fly around, called
enemyShip. The first thing we need to think about is what we want the
enemies to be able to do. Obviously they must be able to fly, so let's give
each enemyShip the methods to moveForword(), moveLeft(),
moveRight() to change their position. And this is a 2D game, so we'll
record each of their positions with an x coordinate and a y coordinate.
We'll also need to handle the player shooting at them and we want them

xnagamemaking.com 77

to be able to be destroyed, so let's give each an integer of hitPoints and a
method to handle firedAt(). We'll add more to our enemy class, but for
now a basic outline of our basic enemy class is:

class enemyShip
float x, y;
int hitPoints;

void setLocation(float xLocation. float yLocation);
void moveForward();
void moveLeft();
void moveRight();
void firedAt();

So that's the basic outline, let's create a real class.

Goto File->New Project and create a Console Application with the name
enemyShipTest. Then right click on the name enemyShipTest in the
Solution Explorer window on the right side of the program. From the
right click menu select Add->New Item. A dialog box will appear, make
sure Class is selected and in the class name type enemyShip and click
Add. Notice in the Solution Explorer window you can click on
Program.cs or enemyShip.cs to choose. Add the following to
enemyShip.cs to have the file look like this:

using System;
using System.Collections.Generic;
using System.Text;

namespace enemyShipTest
{

class enemyShip
{

private float x, y;
private int hitPoints;

EnemyShip(int hitPointStart)
 {

}
public void setLocation(float xLocation, float yLocation)

78 A Simple Introduction to Game Programming With C# and XNA 3.1

{

 }

 public void moveForward()
 {

 }

 public void moveLeft()
 {

 }

 public void moveRight()
 {

 }

 public void firedAt()
 {

 }

 public string GetInfoString()
 {

return "Ship has location “ + x.ToString() + “ “ + y.ToString()
+ “ and has “ + hitpoints.ToString() + “ hitpoints”'

 }
 }
}

We're going to go through this class line by line and set it up.

The first two lines store variables for the ship.

private float x, y;
private int hitPoints;

We don't know where the ship will start at, but we should have each ship
start with the same number of hitpoints. So change the hitpoints line to:

xnagamemaking.com 79

private int hitPoints = 5;

When we declare a variable in a class in C# we can go ahead and give it a
default value, which is what we just did.

We can also assign default values by passing them to the class when it is
created. This is done by a special method called the constructor of the
class. The method EnemyShip(int hitPointStart) is the constructor for
the EnemyShip class. Change it to look like:

EnemyShip(int hitPointStart)
{
 hitPoints = hitPointStart;
}

 We can tell it is the constructor because the method's name is the same
as the class name and it doesn't need any access specifiers in front of it.
The constructor is the method called when creating the class:

EnemyShip ship = new EnemyShip(25); // Creates a ship with 25 hitpoints
EnemyShip ship2 = new EnemyShip(); // This will cause an error, since we
need to pass the //constructor a number of hitpoints.

Going down in code, the setLocation method will just let us set an x and
y value for the ship, so all we'll do here is add:

public void setLocation(float xLocation, float yLocation)
{
 x = xLocation;
 y = yLocation;
}

Now that method is set, it just lets the user specify the location of the
ship.

80 A Simple Introduction to Game Programming With C# and XNA 3.1

Our next function, moveForward(), will move the player forward in the y
direction, so we'll increment the ship’s y value.

public void moveForward()
{
 y++;
}

Similarly, for the moveLeft and moveRight functions we'll just have them
change the x value for the ship:

public void moveLeft()
{
 x--;
}

public void moveRight()
{
 x++;
}

The choice to change the coordinate by 1 is purely arbitrary, we could
have moved by more. Now the last method in the class is firedAt(),
which when the ship is firedAt() (and we assume it is hit) we'll just
decrease the hitPoints by one.

 public void firedAt()
 {
 hitPoints--;
 }

It may not be fancy, but now we have a working class of an enemy ship.
Now let's put it to work.

Creating an Instance

In our main function we'll just create two ships, move them around, and
then print out their info:

xnagamemaking.com 81

static void Main(string[] args)
{
 EnemyShip ship1 = new EnemyShip(30);
 EnemyShip ship2 = new EnemyShip(35);

 ship1.SetLocation(10,10);
 ship1.MoveLeft();
 ship2.Fire();

 ship1.PrintInfo();
 ship2.PrintInfo();
}

The output will be:

Ship has location 10 10 and has 30 hitpoints
Ship has location 0 0 and has 34 hitpoints

Summary

In this chapter we looked at the basics of Object-Oriented Programming.
This just scratched the surface of what OO is and what we can do with it.
OO programming is a huge field; check the appendix for some resources
to learn more about it. But we've learned enough to start making games:
we know the basics of making classes and using them.

82 A Simple Introduction to Game Programming With C# and XNA 3.1

xnagamemaking.com 83

Part II: Creating 2D Games with XNA

In the first part of the book we became familiar with the basics of
game programming and C# and made some little text based programs.
That's all good, but now it's time for things to get more interesting. In
this second part we're going to start programming 2D graphics and make
a complete game. The game we'll be making is called Ship Fighter, it's
going to be a 2D top down game, similar to the old Galaga game. If you
want to see the final result for this section go ahead and download the
ShipFighter2D project from xnagamemaking.com and build and run it.
In the course of making this game will learn all things you'll need to
know to make 2D games with XNA.

84 A Simple Introduction to Game Programming With C# and XNA 3.1

xnagamemaking.com 85

Chapter 6: 2D Games and XNA

In this chapter we'll start to make our first XNA programs, which will
just display pictures on our screen. But before this we'll cover a little bit
of theory. We'll keep things short, but we'll go over a bit of 2D math
including XNA's 2D coordinate system and vectors. Then we'll take a
look at some important game programming concepts and at how sprites
work in XNA. Specifically we'll cover:

 How the coordinate system in 2D in XNA works

 Learn the basic properties of sprites

 Create a “Hello World!” type of XNA program

 Draw a sprite onscreen in XNA

2D Graphics Theory

Coordinate System

The most basic thing to do when creating 2D games is to draw various
pictures on the screen. To do this we need a way of setting locations for
pictures on the screen. If we want to put a picture of a spaceship in the
lower center of our screen, how do we say where that is precisely to the
computer? You probably remember from school learning about the
Cartesian coordinate system. In this system we have two coordinate lines,
axises, one that runs vertically called the y axis and another that runs
across is the x axis. It looks like this:

86 A Simple Introduction to Game Programming With C# and XNA 3.1

We specify a point, which is just a location, by writing its x and y
coordinate, (x,y). The point where the x and y axises cross is called the
origin. Points can be negative or positive numbers, depending on where
they are at in the grid.

To draw our 2D graphics on the screen we're going to use a similar
system; we'll specify locations of all of our graphics using a Cartesian grid
with units (units are how for apart each number is) of pixels on the
screen. But there is one big difference between our graphics grid and a
regular one: the coordinate system for our screen will have the origin in
the upper left corner and the positive x-axis going to the right (which is
usual) but the positive y-axis starts in the upper left corner and goes
down the screen:

xnagamemaking.com 87

We can think of this grid as just a vertical “flip” of the regular coordinate
system. So the point (10,10) is 10 pixels from the left side of the window
and 10 pixels from the top. Using this kind of reversed coordinate system
isn't anything special about XNA, almost all 2D graphics system use it.
At first it can be a little unusual, but it soon becomes natural.

And even though the origin for our coordinate system is in the upper left
corner of the screen, there are still negative axises, they're just off screen
and can't be seen. For example, let's say that we have a picture that is 100
pixels by 100 pixels and we want to have half of the picture in the top
corner of the screen it the picture would be at -50, -50 to 50, 50:

88 A Simple Introduction to Game Programming With C# and XNA 3.1

Vectors

Now that we have our coordinate system set up, we need to talk about
points and how they are set. When programming with sprites in XNA we
technically won't be using points to describe their location, we'll be using
vectors. Vectors are mathematical objects that are similar to points
except that they don't just describe a location but they also have a
magnitude (distance.) We can think of them as a ray from one point to
another:

xnagamemaking.com 89

The illustration above shows the vector AB. In most of our 2D
programming we'll be using vectors where the first point is at the origin:

90 A Simple Introduction to Game Programming With C# and XNA 3.1

You'll notice that this vector is used in a way similar to a point. All it is
doing is describing a location (in this section we'll use the term vectors to
really mean points.) So why use vectors? The main reason is that vectors
are really much more powerful than points. We can do a lot more things
with them, especially in 3D. And since the vectors we use to describe
location are going to start at the origin and they'll have the same
coordinates as points there is no need for a distinct point class. XNA
could have created a separate point class to use instead of vectors, but
most of the code would be redundant and it would get unnecessarily
messy scattered with points and vectors.

How we use vectors in XNA is pretty simple. XNA has objects built in
for vectors in two, three, or four dimensions (for some 3D math
transformations 4D vectors are needed.) These vectors carry floats for
each component. To declare a vector variable we use the Vector keyword
followed by its dimension:

Vector2 playerPosition;

To initialize it:

playerPosition = new Vector2(50.0f, 50.0f);

We can set and access its x and y:

playerPosition.X = 75.0f;
playerPosition.Y = 75.0f;

And we can perform many standard math functions on vectors (adding,
subtracting, multiplying, ...)

There are also some defined vectors for standard positions, such as
Vector2.Zero for a (0.0f, 0.0f) vector.

xnagamemaking.com 91

Game Programming 101

We just looked a little about the geometry of 2D games, let's look a bit at
some game programming concepts.

Game Loop

Video games are a form of interactive computer graphics, meaning that
the graphics can be changed in response to input (for instance moving a
player around with a controller changes what graphics are drawn on
screen.) Of course not all computer graphics are interactive, such as
graphics for special effects for movies. Special effects can take a long
time to render, maybe hours for a single frame. Graphics for video games
must be rendered much quicker, at least 30 frames per second (preferably
60). That's why graphics for movies look so much better than graphics
in video games. In movies we can take as long as we like to draw a frame,
but a frame for a video game only has one sixtieth of a second to draw
everything, and that's not counting time for other non-graphics things
such as physics or AI. Since video games are constantly updating (for the
interaction) they are designed based on giant loop, a loop that constantly
updates everything in the game. The loop can look like the following:

while (Game is Running)
 Check for input (keyboard, mouse, controller)
 Update Entities in the game (player, enemy)
 Update Physics
 Update Collision Detection
 Draw Scene
end while

This loop only has a few things in it, a real game loop includes all kinds
of items, such as checking for network messages or collision detection.
The overall speed of the game loop is measured in the number of frames
that are rendered each second (frames per second or FPS). This is also
referred as Hertz, Hz. A game working at 30 frames per second could be
said to be running at 30Hz. The default speed for XNA games is 60Hz,

92 A Simple Introduction to Game Programming With C# and XNA 3.1

but we can change this if we want to (or it can change if we don't want
to, such as if someone with an older computer tries to run our game and
they can't update that fast.) We'll see the loops we'll use in our game in
our first XNA program later in this chapter.

Finite State Machines

Another concept important to game programming is the idea of
describing things in terms of finite state machines. A finite state machine
(FSM) is just a fancy term for describing things in terms of various
“states” they can be in. For instance, let's say we're making a first person
shooter game and we have an enemy class for creatures we encounter.
An enemy creature could be walking around, or attacking us, or dead and
just laying there. We can describe this enemy as a FSM, with states of
walking, attacking, or dead. When we go to update the entity in the game
we'll change it based on the state the enemy is in. (Like if the enemy is in
the walking state we'll have it move, but if it's in the dead state it won't.)

Thinking of things in terms of FSMs makes the entire game design easier.
Even a game itself can be thought of as a state machine; the typical game
has states such as PLAYING, PAUSED, GAME_OVER,
SPLASH_SCREEN. Sometimes when programming these state
machines the states will be very explicit. When updating the enemy
creature we could have a case statement or series of if's to see which state
the enemy is in:

if(state == WALKING)
 // walking code
else if(state == ATTACKING)
 // attack player code
else if(state == DEAD)
 // Do nothing

and somewhere else we have a function that chooses the value of the
state variable for the entity at each update. Or sometimes we keep the
conceptual idea of the various states, but in the code it is not spelled out
so much. The above code could look like:

xnagamemaking.com 93

if(enemyHealth == 0)
 return; // If destroyed, exit

if(playerDistance < 10)
 // Attack code
else
 // walking code

In this case we use the idea of states, but not explicitly. When creating a
design for your games be sure to think of the different objects and the
different states they can be in.

Graphics VS. Logic

I come from a background of programming graphics, so it's easy for me
to think of game programming as a special case of creating graphics. But
most of the work that goes into programming a game is not in its
graphics. There are huge areas of programming games that have nothing
to do with graphics, such as play control, physics, and artificial
intelligence, to just name a few. But graphics are a major portion of any
video game, and they tend to use a lot of resources. One of the things we
do in game programming is to make a separation of programming logic,
which isn't graphics, and the programming (rendering) of the graphics
themselves. XNA even has two game loops, one for just updating the
graphics and another for everything else. The graphics loop is:

protected override void Draw(GameTime gameTime)

Which will just have code for rendering everything, and the update loop
is:

protected override void Update(GameTime gameTime)

which will contain logical updates, such as checking input. We'll talk
more about these in a moment. Note the two loops run asynchronously,

94 A Simple Introduction to Game Programming With C# and XNA 3.1

which means that it is not the case that the update loop updates, then the
drawing loop updates, then the update again. Instead they run separately,
both running independently (but still at roughly the same rate.)

Sprites

We've covered some math and game concepts, let's look at sprites. The
2D game we'll make in this book is a sprite based game. Sprites are
bitmap images, just regular pictures, that we can move and do different
effects on screen with. (Note the term sprites often mean a series of
multiple pictures, like a little sequence of animation, but in XNA the
term means a static image.) Sprites are raster images, like photographs,
which means that each pixel of the image is stored in memory. Not all
2D games use sprites for their pictures, some use vector graphics. Vector
graphics store programmed painting commands to draw the picture and
so individual pixels of the image aren't stored in memory. Traditionally
2D games have been made with sprites, but some platforms like
Macromedia's Flash use the programmed vector graphics. Sprites give
much more detail and more realistic images, and we won't be using
vector images in this book. All of the older scroller games from
platforms such as the older Segas and Nintendos were made with sprites.
We can do a lot with sprites, and we'll cover some basic concepts of
them here.

Before we get into sprites here are two notes. First in XNA the
documentation calls our pictures sprites, but in the code itself they are
called textures (specifically Texture2D objects) which are standard
picture files used in graphics. Also note the dimensions of a sprite are
just its size measured in pixels. We say this as width by height (and write
it as width x height). So a sprite 300 pixels wide and 200 pixels high is a
300 by 200, or 300 x 200 sprite.

xnagamemaking.com 95

Sprite Positioning

We'll position sprites in our game using the coordinate system described
before. One thing we need to think about when positioning sprites on
the screen is the sprite origin, which is just a specific location on the
sprite, that when we tell XNA to draw it puts the sprite there. If we have
a sprite that is 200 x 200 and it has a sprite origin of (0,0) if we tell XNA
to draw it at point (200.200) it will look like:

But that may not be what we want. If we have a player picture and we
want to say “draw the player at position (200,200)” we probably want the
player picture to be centered at point (200,200), not have the upper left
corner there. Since our picture is 200 x 200, if we put the sprite origin at
(100, 100), the center of it, the sprite will be drawn like this:

96 A Simple Introduction to Game Programming With C# and XNA 3.1

Which makes sense that the location we specify is at the center. By
default the sprite origin is the upper left corner of the sprite, but often
we'll set it to the center of a sprite. The sprite origin is just something to
keep in mind when drawing sprites, so we don't get unexpected results.

Rotation, Translation, and Scale

The three main things we can do to a sprite in our game our translate it,
rotate it, or scale it. Translation means to move the sprite to a different
position, rotation means to put a “spin” on it, and scaling a sprite is just
shrinking or stretching it. These basic operations, translate, rotate, and
scale, are the three basic things we can do to all graphical objects. This is
true for 3D graphical objects as well. Usually these operations are done
using matrices, but we'll translate rotate and scale using prebuilt
functions. And to keep things even simpler we'll assume that the sprites
that we use for our games will be made in the size we want already, so we
won't be scaling the sprites in our games.

xnagamemaking.com 97

Sprite Alpha and Tinting

All of the pictures that we use for our sprites will be bitmap (.bmp), targa
(.tga), .jpeg or .png files. These files are always rectangular, but obviously
we want to draw pictures on the screen that aren't rectangles. If we're
drawing a spaceship on screen we want the picture to be the shape of the
ship, not a rectangle. We can assign parts of the picture an alpha value, a
level of transparency in the image. The alpha parts won't be drawn, or
can be drawn as partially transparent. This lets us render sprites of
different shapes. Also, besides giving the sprites an alpha value we can
also tint the sprite, which means giving it an extra overlay color. If we
don't want to tint the sprite we can just “tint” it white.

Sprite Depth

When we render sprites on the screen the order in which they are drawn
is important. If we have a large background sprite and a smaller
spaceship sprite that supposed to go on top of it we would be in trouble
if the spaceship sprite was drawn first and the background sprite was
drawn on top of it (we wouldn't be able to see the ship.) XNA by default
uses what is called a painter’s algorithm, where the first things listed are
drawn first and later drawing commands draw things on top of the earlier
one. We can keep track of what sprites should go on top of each other
ourselves; we can just give each sprite a depth. The sprite depth is a
decimal number between zero and one. With sprites closer to zero being
drawn last (on top of other sprites) and sprites closer to one being drawn
first (on the “back” of the screen.) For our spaceship sprite we can give it
a depth of zero and our background a depth of one and everything will
be drawn correctly.

Sprite Batching

When we render sprites on screen, we don't just tell the computer to
render them one at a time. Instead what we have to do is put sprites in
groups called sprite batches. Then to render sprites we render the batch
of them. There are a lot of good reasons for drawing sprites this way. It
can make the process of drawing them faster since they all are rendered
at the same time, and easier to program since we can specify options for
how they are to be drawn to whole groups of sprites instead of one at a

98 A Simple Introduction to Game Programming With C# and XNA 3.1

time. We can also use multiple batches to group sprites together logically.
For example, later on we'll be using one batch for the background, a
second for the main game elements (player, enemy) and a third for any
HUD text.

Hello World! XNA

Finally, we are going to start some programming. Just like we did with
C# we'll make an XNA version of Hello World!, except we won't have it
print out anything on the screen and we won't add any code to do
anything; the only thing it will do is show the default blank screen. Even
though we'll just be using the default XNA code we'll go through it line
by line and see what's going on.

To create an XNA program start XNA Game Studio and Goto file-
>New Project. Then select Windows Game (3.1) and type the name
HelloWorldXNA for it.

This will create an XNA project and some code will be automatically
generated for it. The following code (minus some comments) is here:

using System;
using System.Collections.Generic;
using System.Linq;

xnagamemaking.com 99

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Audio;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.GamerServices;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Media;
using Microsoft.Xna.Framework.Net;
using Microsoft.Xna.Framework.Storage;

namespace HelloWorldXNA
{

 public class Game1 : Microsoft.Xna.Framework.Game
 {
 GraphicsDeviceManager graphics;
 SpriteBatch spriteBatch;

 public Game1()
 {
 graphics = new GraphicsDeviceManager(this);
 Content.RootDirectory = "Content";
 }

 protected override void Initialize()
 {
 // TODO: Add your initialization logic here

 base.Initialize();
 }

 protected override void LoadContent()
 {
 // Create a new SpriteBatch, which can be used to draw textures.
 spriteBatch = new SpriteBatch(GraphicsDevice);

 // TODO: use this.Content to load your game content here
 }

 protected override void UnloadContent()
 {
 // TODO: Unload any non ContentManager content here
 }

 protected override void Update(GameTime gameTime)
 {

100 A Simple Introduction to Game Programming With C# and XNA 3.1

 // Allows the game to exit
if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==
ButtonState.Pressed)

 this.Exit();

 // TODO: Add your update logic here

 base.Update(gameTime);
 }

 protected override void Draw(GameTime gameTime)
 {
 GraphicsDevice.Clear(Color.CornflowerBlue);

 // TODO: Add your drawing code here

 base.Draw(gameTime);
 }
 }
}

If you Goto Debugging->Start Debugging or hit F5 you'll see the
following screen appear:

xnagamemaking.com 101

This may not be much, but if you tried writing C++/DirectX code to
just put a window on the screen like this you might have to write up to a
100 lines. Now let's analyze the code. Notice in the first part besides the
regular .Net C# using directives we now have using statements for the
XNA framework as well.

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Audio;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.GamerServices;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Media;
using Microsoft.Xna.Framework.Net;
using Microsoft.Xna.Framework.Storage;

These are all the using directives we need to have access to the complete
XNA framework. You could go through these and see what each one is
in the XNA documentation. Remember that in any file where you need
to use any XNA classes copy these using directives.

102 A Simple Introduction to Game Programming With C# and XNA 3.1

The game itself is in the relevantly named Game class:

public class Game1 : Microsoft.Xna.Framework.Game

Which is a basic framework for a game. All of the games we make with
XNA will be inside this class. Notice the code doesn't have a main
function like all of our Console programs in the previous part of the
book. That's because the Game class takes care of starting and running
our program. The game class starts with two data members:

GraphicsDeviceManager graphics;
SpriteBatch spriteBatch;

The graphics is the graphics device manager and is a very important
object. It handles the underlying graphics device that actually draws
(renders) everything on screen. We'll modify the graphics device when we
want to change the way things are displayed, such as switching our game
from windowed mode to full screen. The other member is a SpriteBatch,
which as is a batch used for drawing groups of sprites.

After these declarations we find our game class constructor, Game1().
The game constructor just initializes the graphics device manager and
sets the name of the directory that all of our game content (sprites,
sounds, etc) will be found in:

public Game1()
{
 graphics = new GraphicsDeviceManager(this);
 Content.RootDirectory = "Content";
}

After this is an initialization method:

 protected override void Initialize();

xnagamemaking.com 103

which if we need to do some things (like calculations) before our game
officially starts up we can put them there. We can also load any non
graphics content there. The next method:

protected override void LoadContent()

is a place to load any graphics resources before the game starts. This will
be a very important method; eventually we'll be adding a lot of graphics
content and it will all be done here. The following method

protected override void UnloadContent()

Lets us unload any graphics content when the game exits to release it out
of memory. We won’t be modifying this method.

After this we have two more methods:

protected override void Update(GameTime gameTime)
protected override void Draw(GameTime gameTime)

These are the game’s two main update loops we talked about before.
These two loops will be running all the time. Just to go over again, the
Update loop is where we update all of the game logic and the Draw loop
is where we draw everything on the screen. Each of these is passed an
instance of the GameTime class, which tells us things about how much
time has passed since the last time the loop was run. (This is helpful for
many things, like physics calculations.)

By default the update loop has a line to test if the game has exited, and
the Draw loop has a graphics command:

GraphicsDevice.Clear(Color.CornflowerBlue);

104 A Simple Introduction to Game Programming With C# and XNA 3.1

The one graphics line clears the screen to the color Cornflower blue (if
you don't like this color you can delete it and type in a different color
such as White. To see a list of colors delete the period after Color and
write it again and Intellisense, Visual Studio's syntax helper, will display a
list of available colors.) The graphics device is cleared at each update of
the graphics loop, and then we have one sixtieth of a second to draw
everything in our game.

Adding a Sprite

We have created our first XNA program, but it doesn't really do much.
So let's get started with sprites and add in a big background sprite, that
covers the whole the whole window. To do this we'll add in an object for
a Sprite.

Go ahead and make a new project for this program. In C#, goto File ->
New Project and select Windows Game (3.1). Name the project
SpriteDisplay and note the folder it is being saved in:

The reason to pay attention to the location the project is saved in is
because we need to copy our artwork to the content folder there. Get the

xnagamemaking.com 105

spaceBackground.bmp file either from the samples on
xnagamemaking.com. Copy the artwork to the content folder inside the
folder of the project. For example, using the path C:\Resources above
we would copy the picture to C:\Resources\SpriteDislay
\SpriteDisplay\Content. With the artwork in the correct location we can
then add it to our project.

Right click on Content folder in the solution explorer on the right side of
Visual C# and select Add.. -> New Item... Then select
spaceBackground.tga and click OK. This adds the sprite to our project.

Now our artwork is setup and onto the sprite code. When we start
adding things to our game class in XNA we'll typically do four things:

1. Declare the variable

2. Initialize the variable, usually in the LoadContent() method

3. Add the item to our Draw loop so we can see it on screen

4. Add the item to our Update loop so we can do any logic updates

on it

For now we are only going to be creating a sprite (the sprite batch is
already created for us). It won't need any update logic so we'll only be
doing the first three things.

First we'll declare the variable. Just before the main Game1 class and
after the spriteBatch definition add the following line:

Texture2D spaceTexture;

Now that we have the sprite defined we'll need to initialize it, so change
the LoadContent method to

106 A Simple Introduction to Game Programming With C# and XNA 3.1

protected override void LoadContent()
{
 spriteBatch = new SpriteBatch(GraphicsDevice);
 spaceTexture = Content.Load<Texture2D>("spaceBackground");
}

The SpriteBatch initialization is pretty simple; all we do need to do to
create it is pass it our graphics device. The syntax

spriteBatchName = new SpriteBatch(GraphicsDevice);

will be the same for any additional sprite batches we create.

To create the sprite we call the content manager to load it and pass it the
name of our texture resource. The content manager is an object that
loads all of the art data, not just sprites. The basic syntax for it is:

Content.Load<ResourceType>("assetName");

Where ResourceType is the type of content we're loading, such as a
texture or 3D model, and assetName is the name of our asset. Assets are
just the name of the file (without any extension). This syntax will also be
used for loading all of our sprites, so the line is worth remembering.

We have the sprite loaded, next let's draw it onscreen. This is a large
texture that fills up everything so we'll just position it in the upper left
hand corner.

protected override void Draw(GameTime gameTime)
{

GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();
 spriteBatch.Draw(spaceTexture, Vector2.Zero, Color.White);
 spriteBatch.End();
 base.Draw(gameTime);
}

xnagamemaking.com 107

To draw our sprite batches we first start them by calling the method
Begin(). After this we call all of our command, to draw the sprites. Then
at the end of the SpriteBatch we call .End(), which actually draws
everything on the screen.

The spaceBatch.Draw() draws the texture. The syntax for it is:

spriteBatch.Draw(spriteName, positionVector, tintColor);

The first parameter is the name of the texture to draw. The second
parameter is where we want the position of the upper left corner of the
sprite to be at. (Again here we put (0,0) for the upper left corner.) The
last parameter is for tinting, which we don't want so we'll just set the tint
to white.

Go ahead and build/run the program by going to Debug->Start
Debugging or hitting F5. You'll see the sprite fill up the screen:

108 A Simple Introduction to Game Programming With C# and XNA 3.1

And now we have a program that draws a sprite on the screen. Try
changing the Vector2.Zero in the draw method to change the position of
the sprite. In the next chapter we'll talk about how to put the other sprite
attributes we mentioned (sprite depth, sprite origin...) in XNA code.

Summary

We have two XNA programs under our belt. In the next chapter we'll
start making the Ship Fighter game, by creating a separate player class for
the game and then take in input from the keyboard and Xbox controller
to move the sprite around.

xnagamemaking.com 109

Chapter 7: Creating a Player Class

When I first taught a course on XNA after showing how to draw a
sprite on the screen I immediately went on to reading in the keyboard
state and moving the sprite around on the screen. Then a few classes
later when we started to make larger games we changed the program so
that the sprites were no longer being stored in the main game class but in
separate classes, such as storing the picture of the player in a player class
instead of in the game class. This proved to be very confusing for people,
and most wanted to just keep the sprites all in the game class. So now, in
order to avoid confusion later, we'll start making a separate class to store
our sprite for the player in, which is more Object-Oriented and is the way
larger games are made.

The class we'll be making is the basics of the Player class for the Ship
Fighter game. This class will be pretty simple: It will draw a sprite for the
player ship on the screen and move it around. We'll also look at some
drawing options to give more details when we're rendering sprites. We
will:

 Create a separate player class for our player sprite.

 Put in more sprite attributes

 Learn how to read input in XNA

Creating a Player Class

Creating a New Project

We’ll start creating the player class for the Ship Fighter game. Create a new
solution just like we did in the previous chapter by going to File->New
Project and select Windows Game (3.1). Name the project SimplePlayer.
Get a copy of shipSprite.png and spaceBackground.tga from
xnagamemaking.com and copy them to the Content folder of
SimplePlayer and add them to the project. (For more details on how to
do this look at the creation of the SpriteDisplay solution in the previous
chapter. Actually, to keep the background go through the steps in that
chapter again to draw the background picture.)

110 A Simple Introduction to Game Programming With C# and XNA 3.1

To create the player class the first step is to add a new CS file for the
player. Right click on the project name (SimplePlayer) in the solution
Explorer and select Add->New Item...

From the Add New Item dialog select Class and give it the name Player
and click OK

xnagamemaking.com 111

This will create a holder for the Player class. The following code is
automatically generated in Player.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SimplePlayer
{
 class Player
 {
 }
}

The first thing that we'll do is add in the XNA using statements so that
we can access XNA code in this file too. Add the following below the
System.Text:

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Audio;

using Microsoft.Xna.Framework.Content;

using Microsoft.Xna.Framework.GamerServices;

using Microsoft.Xna.Framework.Graphics;

using Microsoft.Xna.Framework.Input;

using Microsoft.Xna.Framework.Media;

112 A Simple Introduction to Game Programming With C# and XNA 3.1

using Microsoft.Xna.Framework.Net;

using Microsoft.Xna.Framework.Storage;

You really don't need all of these using directives, but like we said before
we'll just copy all of them to keep things simple. We now have the
Player.cs file setup and ready to start adding code.

Player setup

In the last chapter we went over four things to add a variable to the game
class in XNA:

1. Declare the variable

2. Initialize the variable, usually in the LoadContent() method

3. Add the item to our Draw loop so we can see it onscreen

4. Add the item to our Update loop so we can do any logic updates
on it

For our player we'll be following this pattern. First we'll create the
member for the player in Game.cs, then initialize the player, and then add
drawing and updating to the Player. The two files we'll be working with
here are Player.cs and Game1.cs.

Declare the Player

The first step is easy, in the Game1.cs file or our project before the
public Game1() line add the following:

Player playerShip;

This says we are declaring a new object for our game class, a Player
object called playerShip. Note the term Player is because we named our
player class Player. The playerShip is the name of the instance of our

xnagamemaking.com 113

Player class, and we can call this anything we want. Our player object is
now in our game, but it isn't initialized (loaded) yet.

Initialize the Player

Before initializing the player we need to decide what information we need
to track about the player. Our goal for the moment is to just draw a
player ship on the screen and move it around, so we'll only need a few
member variables for the player. In the player class we'll create variables
for the sprite (picture to draw), a Vector2 for the sprite's position
onscreen, and the sprite origin. The sprite origin remember is where on
the sprite it will center the drawing, and we'll want to keep this in the
center of the sprite (this means if we tell the sprite to be drawn at
coordinate (200,200) on the screen the center of the sprite will be at
(200,200), instead of putting the upper left corner of it there.) In addition
to these we'll store the window width and height we're drawing the sprite
in, in case we need it later.

So in our player class add the following variables:

Vector2 position;
Texture2D shipSprite;
Vector2 spriteOrigin;
int windowWidth, windowHeight;

Next let's create a constructor for the Player, which will initialize these
variables:

// This method is called when the Player is created
public Player(GraphicsDevice device, Vector2 position, Texture2D sprite)
{

// The position that is passed in is now set to the position above
this.position = position;

// Set the Texture2D
shipSprite = sprite;

114 A Simple Introduction to Game Programming With C# and XNA 3.1

// Setup origin
spriteOrigin.X = (float) shipSprite.Width / 2.0f;
spriteOrigin.Y = (float)shipSprite.Height / 2.0f;

// Set window dimensions
windowHeight = device.Viewport.Height;
windowWidth = device.Viewport.Width;

}

This constructor takes in a GraphicsDevice, position, and Texture2D.
For the player's position we set the position passed in as our start
position. Then for the shipSprite we set it to the sprite passed in. For the
origin we just take the center of the shipSprite, which is found by taking
its width and height and dividing by two:

spriteOrigin.X = (float) shipSprite.Width / 2.0f;
spriteOrigin.Y = (float) shipSprite.Height / 2.0f;

Then for the window width and height we look at the graphics device's
viewport (drawing area) width and height:

windowHeight = device.Viewport.Height;
windowWidth = device.Viewport.Width;

That sets up our player constructor. Let's initialize the player back in the
game class. Change the LoadContent method in the Game1.cs to this:

protected override void LoadContent()
{

spriteBatch = new SpriteBatch(GraphicsDevice);
spaceTexture = Content.Load<Texture2D>("spaceBackground");
Texture2D playerTexture = Content.Load<Texture2D>("shipSprite");
playerShip = new Player(GraphicsDevice, new Vector2(400, 300),

playerTexture);
}

The first thing new here is the loading of the sprite for the player ship.
Note that we declare this as a local variable since we won't be using the

xnagamemaking.com 115

playerTexture in the Game1.cs file any after we create the player. Then
we initialize the player by giving it the current GraphicsDevice, a start
position Vector2 (which doesn't have to be (400,300), this was just
chosen because it puts it in the center), and the sprite for the player ship.

If you try running the program now by going to Debug->Start
Debugging you'll find that nothing seems to happen; it still just shows the
background from last time but no ship. This is because we have
initialized the player but we are not drawing or updating it yet.

Drawing the Player

To draw the player we’ll first add a draw method to the player class.
Right below the Player constructor method in Player.cs add the
following:

 // Draw the player
public void Draw(SpriteBatch batch)
{

batch.Draw(shipSprite, position, null, Color.White,
 0.0f, spriteOrigin, 1.0f, SpriteEffects.None, 0.0f);
}

This method takes in a SpriteBatch and then uses it to draw the
shipSprite on the screen. As you can see the batch.Draw looks a bit
different than the ones we've seen before. We'll go over the changes in a
minute, but for now change the Draw method in Game1.cs to:

protected override void Draw(GameTime gameTime)
{

GraphicsDevice.Clear(Color.CornflowerBlue);

spriteBatch.Begin();

spriteBatch.Draw(spaceTexture, Vector2.Zero, Color.White);

playerShip.Draw(spriteBatch);

116 A Simple Introduction to Game Programming With C# and XNA 3.1

spriteBatch.End();

base.Draw(gameTime);
}

The key line here is the:

playerShip.Draw(spriteBatch);

This calls the player's draw method and tells it to draw the ship sprite on
the screen. If you run the program you'll see this:

We're drawing the ship in our game by putting it in the draw loop and
adding a draw method to the Player class. Next we'll look at that
batch.Draw method in the Player class again.

Sprite Attributes

The draw method we used this time was:

xnagamemaking.com 117

batch.Draw(shipSprite, position, null, Color.White,
 0.0f, spriteOrigin, 1.0f, SpriteEffects.None, 0.0f);

This matches up with this definition:

public void Draw (
 Texture2D spriteName,
 Rectangle destinationRectangle,
 Color tint,
 float rotation,
 Vector2 origin,
 SpriteEffects effects,
 float layerDepth
)

The first parameter, spriteName, is the name of the sprite to draw. The
second parameter is for a destination rectangle. If we want just part of
the image to be drawn we specify a rectangle to be the size of the sprite
on screen. If you try replacing the null in our code with the line new
Rectangle(0,0,40,100) and run the program you'll see only half of the
spaceship, since the destination rectangle is half the size of our original
image. This parameter we'll keep at null most of the time.

The third parameter is for adding a tint to our image. The parameter is a
color, (if you type Color. a list of colors will be available.) We don't want
a tint so we'll just keep the color white. The rotation allows us to set an
angle of rotation for the sprite, if we want it a different orientation. The
next parameter is a vector for the sprite origin. Remember for a
spaceship sprite that we move along the screen we don't think of the
spaceship's position as where its upper left corner, so we'll put the origin
at the center of the spaceship sprite. This way the position of the
spaceship means its center.

The SpriteEffects parameter allows us to flip the picture if we want to
(the enumeration is FlipHorizontally and FlipVertically) but, again, we'll
leave that on None. The last parameter is the layer depth. The sprite

118 A Simple Introduction to Game Programming With C# and XNA 3.1

depth, if you recall, is the order in which the sprites are drawn on top of
each other, with those closest to 0.0 being nearer to the top, and those
close 1.0 being at the bottom. So we give the spaceship a depth of 0.0
since it's on top and the background a depth of 1.0.

We have the ship drawing, now for moving it around.

Updating the Player

Our goal for the player is to have the sprite moving around based on
input. First we’ll put in the basic structure for the update. In the player
class add the following method below the Draw() one:

// Update - for animation
public void Update(GameTime gameTime)
{

}

And change the Update loop in the Game1 class to update the player
too:

protected override void Update(GameTime gameTime)
{
 // Allows the game to exit

if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==
ButtonState.Pressed)

this.Exit();

playerShip.Update(gameTime);

base.Update(gameTime);
}

We'll be using this a little later. One thing we can do now is creating
some methods to change the ship's position. From Game1.cs we'll be
getting keyboard and game controller input, and based on that we'll want

xnagamemaking.com 119

to call some functions to move the player sprite around. So add the
following four methods to the Player class:

 // These match up with the Arrow keys
public void Accelerate()
{

position.Y -= 3.0f;
}

public void MoveReverse()
{

position.Y += 3.0f;
}

public void TurnRight()
{

position.X += 3.0f;
}

public void TurnLeft()
{

position.X -= 3.0f;
}

These methods move the shipSprite around on the screen by changing its
position. The first two, Accelerate and MoveReverse, move the
shipSprite up and down the screen respectively. Note to move the
shipSprite up the screen we subtract from its Y coordinate. Since the
zero for Y is at the top of the screen subtracting Y moves up and adding
to Y moves down. Turning left and right change the X position. Now we
are setup for input.

XNA Input

For input in XNA we have three basic options, the keyboard, Xbox
controller, and mouse (we won't worry about the mouse here.) For
getting input XNA works a little bit differently than a lot of systems.
XNA uses a polling method instead of an event driven method. An event
driven method is one where the user does something to generate input,
like pressing a key on a keyboard, and then a message is sent to the

120 A Simple Introduction to Game Programming With C# and XNA 3.1

program letting it know the input event just happened. XNA's polling
method does not generate events like this; what XNA does is at every
update of the Update loop you can request the current keyboard state.
This state is a snapshot of the keyboard and you can check this snapshot
of the keyboard and see what keys are down. This is faster, but we'll need
to be careful later when we want to see if buttons are pressed that toggle
options. To see how this works copy the following UpdateInput method
into the Game class below the Update loop.

private void UpdateInput()
{

KeyboardState keyState = Keyboard.GetState();
GamePadState gamePadState = GamePad.GetState(PlayerIndex.One);

if (keyState.IsKeyDown(Keys.Up)
 || gamePadState.DPad.Up == ButtonState.Pressed)
{

playerShip.Accelerate();
}
if (keyState.IsKeyDown(Keys.Down)
 || gamePadState.DPad.Down == ButtonState.Pressed)
{

playerShip.MoveReverse();
}
if (keyState.IsKeyDown(Keys.Left)
 || gamePadState.DPad.Left == ButtonState.Pressed)
{

playerShip.TurnLeft();
}
if (keyState.IsKeyDown(Keys.Right)
 || gamePadState.DPad.Right == ButtonState.Pressed)
{

playerShip.TurnRight();
}

}

In the main Game update loop add the line:

UpdateInput();

xnagamemaking.com 121

This works just like we described. The first two lines get the current state
of the keyboard and (optionally) Xbox controller:

KeyboardState keyState = Keyboard.GetState();
GamePadState gamePadState = GamePad.GetState(PlayerIndex.One);

For the Gamepad (Xbox controller) we can get the state of up to four
controllers, so we tell it PlayerIndex.One to get the state of the first one.

After this we just query if a key or gamepad D button is currently
pressed. For the keyboard we use

keyState.IsKeyDown(Keys.)

Which says if the key is down of the argument we pass in. The Keys is an
enumeration of all the keyboard keys (type in Keys. and wait for
intellisense to show a list of all possible keys.) For the Gamepad we just
check the state of the DPad (directional pad) and see if its state is pressed
too. We'll be using more Xbox controller buttons later, if you're curious
about how to check the rest for now look in the XNA documentation.

If you run the solution now you'll be able to move the ship around on
the screen with the keyboard or gamepad. This is quite a big start for our
game, having a player class setup and moving a player around onscreen.
Next we'll add a few things to it.

Extending the Player

One simple thing we can add to the player class is to keep the player
always on screen. Currently you can move the player completely off
screen, but it'd be nice to keep it always visible. And right now the ship
moves up/down and left/right just at a constant velocity (speed) of 3
pixels per update. It'd be nice to make this be a bit more realistic, having
the ship accelerate and decelerate with changing speeds. We'll do some
very simple physics to put that in. This solution is just an extension of

122 A Simple Introduction to Game Programming With C# and XNA 3.1

SimplePlayer, but is listed as Simple Player Extended on
xnagamemaking.com.

Keeping Onscreen

To keep the ship onscreen we'll make use of the window width and
height variables that we put in earlier. All we'll do is change the Update
method of the Player to the following:

public void Update(GameTime gameTime)
{

if (position.Y < 0) position.Y = 0.0f;
if (position.Y > windowHeight) position.Y = windowHeight;
if (position.X < 0) position.X = 0.0f;
if (position.X > windowWidth) position.X = windowWidth;

}

At each update we're checking to see if the X or Y coordinate of the
position is below zero, which is off-screen, and if it is just setting the
position to zero. And if the X or Y is greater than the window size,
which is also off-screen, we max out the position to it. We are locking
max and min positions so the ship is always onscreen now.

Putting in Simple Physics

On to putting in acceleration/deceleration. We're not actually putting in
real physics here, just some quick hacks to give the ship a physics feel.
What we'll do is create a variable called velocity that tracks how fast the
ship is going. At each update we'll add to the vertical position the velocity
times how much time has padded. And though in space there is no
resistance (slow down) we'll go ahead and put in a resistance that shrinks
the velocity at each update. This will give us an acceleration and
deceleration for the ship.

So first in the Player class add a new variable called velocity below the
windowWidth and windowHeight variables:

xnagamemaking.com 123

 // Up/Down speed
float velocity = 0.0f;

This initializes the velocity to zero, which makes sense since the ship
won't start out moving. Then change the Accelerate() and MoveReverse()
methods to just change the velocity directly:

public void Accelerate()
{
 velocity -= 20.0f;
}

public void MoveReverse()
{
 velocity += 20.0f;
}

The choice of 20 is completely arbitrary. The units here are just pixels per
second and 20 felt like a good choice. Next we'll put in the position
update. This should go right before our window bounds check in the
Player update:

position.Y += velocity * (float)gameTime.ElapsedGameTime.TotalSeconds;
velocity *= 0.95f;

This does what we just said it would. The first line adds to the current
position the velocity time the elapsed time. The second line shrinks the
velocity by multiplying by 0.95 at each update. Again, the choice of 0.95
is arbitrary; feel free to play with different values for it.

Summary

We have the start of our Ship Fighter game setup. We have a player class
setup and can move it around onscreen, and saw how to add two simple
adjustments to it. In the next chapter we'll put in a multi-level scrolling
background for it.

124 A Simple Introduction to Game Programming With C# and XNA 3.1

xnagamemaking.com 125

Chapter 8: Scrolling Backgrounds

One of the most popular things to do with 2D games is to have
backgrounds that have several layers that move at different speeds.
You've probably seen this effect in 2D scrolling games where a character
is walking across the screen and the immediate background behind the
character is moving at one speed and a background farther in the
distance (like a sky far away) is moving at a different speed a little bit
slower. This creates a 3D like effect even though the whole game is still
2D. The technical term for these backgrounds with different layers is
parallax backgrounds, but here we'll just call them multi-backgrounds or
scrolling backgrounds. We'll also talk a bit about including third party
code mixed in with your own. Specifically we will:

 Look at a scrolling background class.

 Put the scrolling background into our ship game.

Scrolling Background Example Project

Download and build the Scrolling Background from
xnagamemaking.com. If you run this program you'll see a scrolling
background with two layers:

126 A Simple Introduction to Game Programming With C# and XNA 3.1

If you press the S key it will stop the moving, the M key will restart it.
The left and right arrows let you manually move the backgrounds, and
the 'U' and 'R' keys will let the background move up and down or left and
right. We won't go over the details of the Game1.cs file for this project,
we'll just look at the MultiBackground.cs, which contains the code that
handles the background. The MultiBackground class works by keeping a
list of the different background layers and moving and drawing each
based on how they are set. Here is the full listing for the code:

class BackgroundLayer
{

public Texture2D picture;
public Vector2 position = Vector2.Zero;
public Vector2 offset = Vector2.Zero;
public float depth = 0.0f;
public float moveRate = 0.0f;
public Vector2 pictureSize = Vector2.Zero;
public Color color = Color.White;

}

xnagamemaking.com 127

 class MultiBackground
 {
 private bool moving = false;
 private bool moveLeftRight = true;

 private Vector2 windowSize;

 private List<BackgroundLayer> layerList = new

List<BackgroundLayer>();

 private SpriteBatch batch;

 public MultiBackground(GraphicsDeviceManager graphics)
 {
 windowSize.X = graphics.PreferredBackBufferWidth;
 windowSize.Y = graphics.PreferredBackBufferHeight;
 batch = new SpriteBatch(graphics.GraphicsDevice);
 }

 public void AddLayer(Texture2D picture, float depth, float moveRate)
 {
 BackgroundLayer layer = new BackgroundLayer();
 layer.picture = picture;
 layer.depth = depth;
 layer.moveRate = moveRate;
 layer.pictureSize.X = picture.Width;
 layer.pictureSize.Y = picture.Height;

 layerList.Add(layer);
 }

 public int CompareDepth(BackgroundLayer layer1, BackgroundLayer

layer2)
 {
 if (layer1.depth < layer2.depth)
 return 1;
 if (layer1.depth > layer2.depth)
 return -1;
 if (layer1.depth == layer2.depth)
 return 0;
 return 0;
 }

 public void Move(float rate)
 {
 float moveRate = rate / 60.0f;

128 A Simple Introduction to Game Programming With C# and XNA 3.1

 foreach (BackgroundLayer layer in layerList)
 {
 float moveDistance = layer.moveRate * moveRate;

 if (!moving)
 {
 if (moveLeftRight)
 {
 layer.position.X += moveDistance;
 layer.position.X = layer.position.X % layer.pictureSize.X;
 }
 else
 {
 layer.position.Y += moveDistance;
 layer.position.Y = layer.position.Y % layer.pictureSize.Y;
 }
 }
 }
 }

 public void Draw()
 {
 layerList.Sort(CompareDepth);

 batch.Begin();

 for (int i = 0; i < layerList.Count; i++)
 {
 if (!moveLeftRight)
 {
 if (layerList[i].position.Y < windowSize.Y)
 {
 batch.Draw(layerList[i].picture, new Vector2(0.0f,

layerList[i].position.Y), layerList[i].color);
 }
 if (layerList[i].position.Y > 0.0f)
 batch.Draw(layerList[i].picture, new Vector2(0.0f,

layerList[i].position.Y - layerList[i].pictureSize.Y),
layerList[i].color);

 else
 batch.Draw(layerList[i].picture, new Vector2(0.0f,

layerList[i].position.Y + layerList[i].pictureSize.Y),
layerList[i].color);

 }
 else

xnagamemaking.com 129

 {
 if (layerList[i].position.X < windowSize.X)
 {
 batch.Draw(layerList[i].picture, new

Vector2(layerList[i].position.X, 0.0f), layerList[i].color);
 }
 if (layerList[i].position.X > 0.0f)
 batch.Draw(layerList[i].picture, new

Vector2(layerList[i].position.X - layerList[i].pictureSize.X,
0.0f), layerList[i].color);

 else
 batch.Draw(layerList[i].picture, new

Vector2(layerList[i].position.X + layerList[i].pictureSize.X,
0.0f), layerList[i].color);

 }
 }

 batch.End();
 }

 public void SetMoveUpDown()
 {
 moveLeftRight = false;
 }

 public void SetMoveLeftRight()
 {
 moveLeftRight = true;
 }

 public void Stop()
 {
 moving = false;
 }

 public void StartMoving()
 {
 moving = true;
 }

 public void SetLayerPosition(int layerNumber, Vector2 startPosition)
 {
 if (layerNumber < 0 || layerNumber >= layerList.Count) return;

130 A Simple Introduction to Game Programming With C# and XNA 3.1

 layerList[layerNumber].position = startPosition;
 }

 public void SetLayerAlpha(int layerNumber, float percent)
 {
 if (layerNumber < 0 || layerNumber >= layerList.Count) return;

 float alpha = (percent / 100.0f);

 layerList[layerNumber].color = new Color(new Vector4(0.0f, 0.0f, 0.0f,

alpha));
 }

 public void Update(GameTime gameTime)
 {

 foreach(BackgroundLayer layer in layerList)
 {
 float moveDistance = layer.moveRate / 60.0f;

 if (moving)
 {
 if (moveLeftRight)
 {
 layer.position.X += moveDistance;
 layer.position.X = layer.position.X % layer.pictureSize.X;
 }
 else
 {
 layer.position.Y += moveDistance;
 layer.position.Y = layer.position.Y % layer.pictureSize.Y;
 }
 }
 }
 }
}

The idea when going through this is that you don't need to understand
every detail of this file, but just enough to be able to use it. We'll go
through a few big points in the code here and then see how to use it in
the Ship Fighter game.

The first thing to look at is the definition of a background layer:

xnagamemaking.com 131

class BackgroundLayer
{

public Texture2D picture;
public Vector2 position = Vector2.Zero;
public Vector2 offset = Vector2.Zero;
public float depth = 0.0f;
public float moveRate = 0.0f;
public Vector2 pictureSize = Vector2.Zero;
public Color color = Color.White;

}

This shows you the different attributes we track abut each layer. We keep
a picture of each (of course), its position and any initial start position
offset (like if we wanted the layer to start in the middle of the screen).
We also keep the sprite depth, which is very important since that decides
what order the layers are drawn in. We also keep how fast it is moving
(moveRate) which is in pixels per second. And we keep any tint for the
layer, which is the color member.

For the ScrollingBackground class, which manages the background
layers, we'll only look at a few important methods. The first is the
constructor for the ScrollingBackground, that takes in a
GraphicsDeviceManager, which it uses to get the current windowSize:

public MultiBackground(GraphicsDeviceManager graphics)

So to create a ScrollingBackground we initialize it by passing the device
manager in:

MultiBackground background;
background = new MultiBackground(graphics);

To create different layers we use the AddLayer method:

public void AddLayer(Texture2D picture, float depth, float moveRate)

132 A Simple Introduction to Game Programming With C# and XNA 3.1

There are three parameters to this method. The first takes in the sprite to
be used for this layer. The second parameter is the sprite depth for this
layer, with zero being on top and 1 at the bottom. The last parameter is
the moveRate, which is how fast the later will move when the default
moving is turned on. An example of using this method is:

Texture2D sky = Content.Load<Texture2D>("SkyLayer");
 background.AddLayer(sky, 0.5f, 200.0f);

Another important method is Move():

public void Move(float rate)

This moves everything based on a rate, which is the amount of time for
everything to move. So if a layer has a moveRate of 150 pixels per second
to move it 75 pixels we would do this:

background.Move(0.5f);

Another big method is the Draw one:

public void Draw()

Which is pretty simple to use, we just add to the draw loop:

background.Draw();

likewise there is a Update method that belongs in the game Update loop:

public void Update(GameTime gameTime)

Two other methods:

xnagamemaking.com 133

public void SetMoveUpDown()
public void SetMoveLeftRight()

Just set of the background should move up and down or left and right.

The next two methods stop and start the animation (automatic scrolling):

public void Stop()

public void StartMoving()

And there are methods to set the default start position for a layer and an
alpha tint to a layer.

Adding a Background to the Ship fighter

We've seen how our scrolling background works, let's add our new
background to the ship game. We'll only use one layer of it, the same
space background it currently has, but will make it scroll down the
screen. The source for this project will take up where we left off on
SimplePlayer Extended and this project is at xnagamemaking.com called
SimplePlayer Extended with Background.

The first thing we'll need to do to our project is add the
MultiBackground.cs to it. You can find the MultiBackground.cs in the
ScrollingBackground solution or at xnagamemaking.com. Copy
MultiBackground.cs to the source folder of the SimplePlayer Extended
project (where the Game1.cs file is) and add it to the project by right
clicking on the project name in Solution Explorer and choosing Add-
>Existing Item and select MultiBackground.cs. (This is similar to the way
we added the Player.cs file in the last chapter, except here we are not
creating a new item but adding an existing one.)

After we have MultiBackground.cs added to the project the first thing we
want is to have that code available for the Game class. The namespace of

134 A Simple Introduction to Game Programming With C# and XNA 3.1

the MultiBackground.cs is xnaExtras, so in the using statements in the
Game1.cs file add the following:

using xnaExtras;

This allows us to put a MultiBackground object into the Game class.
Remember the four basic steps to adding an object to our game:

1. Declare the object
2. Initialize the object, usually in the LoadContent() method
3. Add the item to our Draw loop so we can see it onscreen
4. Add the item to our Update loop so we can do any logic

updates on it

So the first thing we need to do is declare the MultiBackground object.
To do this we'll delete the line:

Texture2D spaceTexture;

and replace it with:

MultiBackground spaceBackground;

since we won't be drawing a sprite for the background but will be using
the MultiBackground object instead. Now we have a MultiBackground
object declared with the name spaceBackground. Next we need to
initialize it, so change the LoadContent method to:

protected override void LoadContent()
{

spriteBatch = new SpriteBatch(GraphicsDevice);

// This method is the constructor found in MultiBackground.cs
spaceBackground = new MultiBackground(graphics);
// Create the texture/sprite for the hill

xnagamemaking.com 135

Texture2D spaceTexture =
Content.Load<Texture2D>("spaceBackground");

// Add the space layer to the background, this is also in
// MultiBackground.cs
spaceBackground.AddLayer(spaceTexture, 0.0f, 200.0f);
spaceBackground.SetMoveUpDown();
spaceBackground.StartMoving();

Texture2D playerTexture = Content.Load<Texture2D>("shipSprite");
playerShip = new Player(GraphicsDevice, new Vector2(400, 300),

playerTexture);
}

Here to initialize the background first we created it and the spaceTexture
for it. Then we added a layer. Remember the three parameters we pass to
the AddLayer method is the sprite name, it's sprite depth (zero being
closest to the bottom), and default speed (200 pixels per second). After
this we set the background to move up and down (instead of the default
left to right) and then tell it to start moving. If you run the project now it
won't work yet. Next we have to draw it.

To draw the background change the SpriteBatch drawing method in the
Game class to draw the background right after clearing the screen:

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

spaceBackground.Draw();

We want the background to be the lowest layer on the screen so we'll
always draw it first right after clearing the screen. If your run the program
you'll see the background on the screen again, but it's not moving. We
still need to update it, so add the following to the Game update loop:

spaceBackground.Update(gameTime);

Now we have a scrolling background behind the ship.

136 A Simple Introduction to Game Programming With C# and XNA 3.1

Summary

This chapter has been a little different than the previous ones, in that we
just took a source file, looked at the key parts of it, and added it to our
ship project. The next chapter will be similar to this in that we'll be
adding animation to the project.

xnagamemaking.com 137

Chapter 9: Animation

One of the most important things to do in a 2D game is to create
animation. If you have a character that is walking across the screen you
don't want just a single from sliding across, but several frames that are
animated in a walk sequence. XNA doesn't have sprite animation built in
to it (not that it needs to) so we'll be making a new class here that handles
the animation for us. Then we'll add the animation to our Ship Fighter
game. Our goals are:

 Create a class to handle sprite animation

 Put animation in a scroller game.

 Put animation into our ship game.

Changing Screen Size

Before going into animation let's see how to change the screen size for
XNA. This doesn't have anything to do with animation, but is good to
know. The default screen size for XNA is 800 pixels wide and 600 pixels
tall. To change the screen size we change the back buffer width and
height of the graphics device. The back buffer is a place in memory
where the screen refreshes are originally drawn to, and then when the
screen has been refreshed the back buffer is placed onto the monitor.
This writing to an off-screen back buffer and then flipping it to the
screen buffer is called double buffering. Here is a little function that
changes the screen size, that can go anywhere in the Game1.cs file.

public void SetWindowSize(int x, int y)
{

graphics.PreferredBackBufferWidth = x;
graphics.PreferredBackBufferHeight = y;
graphics.ApplyChanges();

}

To use it we just call it after we initialize the graphics device manager:

138 A Simple Introduction to Game Programming With C# and XNA 3.1

public Game1()
{

graphics = new GraphicsDeviceManager(this);
Content.RootDirectory = "Content";
SetWindowSize(1280, 1024);

}

Remember if you want your game to run in full screen mode smoothly
you should set the size to a standard screen size (which can be found by
right clicking of the desktop of you computer, selection properties and
looking at sizes in the Settings tab.) Otherwise you can pick any setting
you like, as long as it is not bigger than you graphics card can handle.

Animation Sample

Back to animation, download and run the Animation sample from
xnagamemaking.com. The player that appears onscreen can move left
and right with the arrow keys and pressing A will attack. The main file of
this project is Animation.cs; the Animation class works by having
different cells of animation (sprites) added to it, then you can play or
loop through a series of them. Here is the source code for it:

struct AnimationCell
{
 public Texture2D cell;
}

class Animation
{
 int currentCell = 0;

 bool looping = false;
 bool stopped = false;
 bool playing = false;
 // Time we need to goto next frame
 float timeShift = 0.0f;

 // Time since last shift
 float totalTime = 0.0f;
 int start = 0, end = 0;
 List<AnimationCell> cellList = new List<AnimationCell>();

xnagamemaking.com 139

 Vector2 position;

 float scale = 1.0f;
 SpriteEffects spriteEffect = SpriteEffects.None;

 public float Scale
 {
 set
 {
 scale = value;
 }
 }

 Vector2 spriteOrigin = Vector2.Zero;

 public Vector2 SpriteOrigin
 {
 set
 {
 spriteOrigin = value;
 }
 }

 public Animation(Vector2 position)
 {
 this.position = position;
 }

 public void AddCell(Texture2D cellPicture)
 {
 AnimationCell cell = new AnimationCell();
 cell.cell = cellPicture;

 cellList.Add(cell);
 }

 public void SetPosition(float x, float y)
 {
 position.X = x;
 position.Y = y;
 }

 public void SetPosition(Vector2 position)
 {
 this.position = position;

140 A Simple Introduction to Game Programming With C# and XNA 3.1

 }

 public void SetMoveLeft()
 {
 spriteEffect = SpriteEffects.FlipHorizontally;
 }

 public void SetMoveRight()
 {
 spriteEffect = SpriteEffects.None;
 }

 public void LoopAll(float seconds)
 {
 if (playing) return;

 stopped = false;
 if (looping) return;

 looping = true;
 start = 0;
 end = cellList.Count - 1;

 currentCell = start;
 timeShift = seconds / (float)cellList.Count;
 }

 public void Loop(int start, int end, float seconds)
 {
 if (playing) return;

 stopped = false;
 if (looping) return;

 looping = true;
 this.start = start;
 this.end = end;

 currentCell = start;
 float difference = (float)end - (float)start;

 timeShift = seconds / difference;
 }

 public void Stop()
 {

xnagamemaking.com 141

 if (playing) return;

 stopped = true;
 looping = false;
 totalTime = 0.0f;
 timeShift = 0.0f;
 }

 public void GotoFrame(int number)
 {
 if (playing) return;

 if (number < 0 || number >= cellList.Count) return;
 currentCell = number;
 }

 public void PlayAll(float seconds)
 {
 if (playing) return;
 GotoFrame(0);
 stopped = false;
 looping = false;
 playing = true;
 start = 0;
 end = cellList.Count - 1;

 timeShift = seconds / (float)cellList.Count;
 }

 public void Play(int start, int end, float seconds)
 {
 if (playing) return;
 GotoFrame(start);
 stopped = false;
 looping = false;
 playing = true;
 this.start = start;
 this.end = end;

 float difference = (float)end - (float)start;

 timeShift = seconds / difference;
 }

 public void Draw(SpriteBatch batch)

142 A Simple Introduction to Game Programming With C# and XNA 3.1

 {
 if (cellList.Count == 0 || currentCell < 0 ||
 cellList.Count <= currentCell) return;

 batch.Draw(cellList[currentCell].cell, position, null, Color.White, 0.0f,

spriteOrigin,
 new Vector2(scale, scale), spriteEffect, 0.0f);
 }

 public void Update(GameTime gameTime)
 {
 if (stopped) return;

 totalTime += (float) gameTime.ElapsedGameTime.TotalSeconds;
 if (totalTime > timeShift)
 {
 totalTime = 0.0f;

 currentCell++;

 if (looping)
 {
 if (currentCell > end) currentCell = start;
 }
 if (currentCell > end)
 {
 currentCell = end;
 playing = false;
 }
 }
 }
}

Like with the background code we won't go into much of the inner
details, but will hit the main points. The constructor for the Animation
class takes in a position, which is where on the screen the animation
should be drawn:

public Animation(Vector2 position)

You can also set the spriteOrigin and change the position later, for
example if playerAnimation is our object:

xnagamemaking.com 143

playerAnimation.SpriteOrigin = new Vector2(50.0f, 50.0f);
playerAnimation.Position.X = 50.0f;

are both valid lines of code. To create the animation cells we just load a
texture and add it to it:

Texture2D animationCell = Content.Load<Texture2D>("Walk_1");
playerAnimation.AddCell(animationCell);

Right now the Animation class doesn't keep an id or numbering of the
cell, so when referring to the cells later it is by the number of the order it
was added to the animation. The first cell you add is zero (it is zero based
indexed) the second cell is one, and so on. To draw a specific cell we use:

public void GotoFrame(int number)

where number is the frame number to draw. To play an animation we
have two options, to play an animation once or to play the animation and
have it loop. The syntax for the two are similar:

public void Loop(int start, int end, float seconds)
public void Play(int start, int end, float seconds)

where start is the number of the first frame of the animation to play and
end is the last. The seconds is how much time it should take to play the
animation. If you look at the Game1.cs you'll find that the Loop is used
for the walk cycle, since we want to repeat it as long as the character is
walking. But for the attack animation Play is used because we want to
play the animation just once during an attack. In addition to these there
are LoopAll and PlayAll methods that cycle through every cell for the
animation.

Two more methods let you flip which way the pictures are facing:

144 A Simple Introduction to Game Programming With C# and XNA 3.1

public void SetMoveLeft()
public void SetMoveRight()

If you look through the Game1.cs in the Animation sample you'll see an
example of how the animation works. Pressing the left or right arrow will
change the player position onscreen to the left or right and play the walk
animation, but if neither are pressed the animation goes to frame zero,
the standing still picture. Looking at this sample should be enough to
create standard scroller games with the character walking around the
screen.

Adding Animation to Ship Fighter

Now let's add some animation to the Ship Fighter game. What we'll do is
pretty simple; we'll add in two more pictures, one of the ship rotating to
the left and another rotating to the right, so when we turn left or right
we'll see the ship change. The solution for this project is Player with
Animation at xnagamemaking.com. Or you can follow these steps to add
to the background project from last time.

The first thing to do is to add Animation.cs to the ship project. This is
done the same as for MultiBackground.cs, copy Animation.cs to the
folder with the Game1.cs and from the solution explorer right click on
the project name and select Add->Existing Item and select the
Animation file. Also to the content directory copy the art files shipLeft
and shipRight and add them to the project.

The first thing we'll do is in the Player.cs delete the single sprite that used
to hold our ship picture and replace it with an Animation object. So
delete the line in Player.cs that has:

Texture2D shipSprite;

and replace it with an Animation object:

Animation playerAnimation;

xnagamemaking.com 145

You'll also need to add the using xnaExtras to the Player.cs. Currently the
constructor for the Player class takes in a texture and saves it and
calculates the sprite origin from it:

public Player(GraphicsDevice Device, Vector2 position, Texture2D sprite)
{

this.position = position;

shipSprite = sprite;
 spriteOrigin.X = (float) shipSprite.Width / 2.0f;
 spriteOrigin.Y = (float)shipSprite.Height / 2.0f;
 windowHeight = Device.Viewport.Height;

windowWidth = Device.Viewport.Width;
}

Since we are no longer using a single sprite we won't pass a Texture2D in
but we will need a sprite origin. So we'll change it to:

public Player(GraphicsDevice Device, Vector2 position, Vector2 origin)
{

// The position that is passed in is now set to the position above
this.position = position;

// Create the animation, this method is in Animation.cs
playerAnimation = new Animation(position);

windowHeight = Device.Viewport.Height;
windowWidth = Device.Viewport.Width;

playerAnimation.SpriteOrigin = origin;
playerAnimation.Stop();

}

Here we initialized the animation by giving it the start position for the
player and set the SpriteOrigin for the animation. The next thing we'll do
is add a method to add frames of animation to the player. So after the
constructor add the following to the player class.

146 A Simple Introduction to Game Programming With C# and XNA 3.1

public void AddCell(Texture2D cellPicture)
{
 playerAnimation.AddCell(cellPicture);
}

Now we're setup to create a Player and give it the different frames of
animation for the ship. We'll do that now. In the Game1.cs LoadContent
method remove the current player initialization and replace it with the
following:

Texture2D shipMain = Content.Load<Texture2D>("shipSprite");
// Create our player, besides position we pass it the graphics device
playerShip = new Player(graphics.GraphicsDevice, new Vector2(400.0f,

350.0f), new Vector2(shipMain.Width / 2, shipMain.Height / 2));

playerShip.AddCell(shipMain);
Texture2D shipLeft = Content.Load<Texture2D>("shipLeft");
playerShip.AddCell(shipLeft);
Texture2D shipRight = Content.Load<Texture2D>("shipRight");
playerShip.AddCell(shipRight);

This modification first reads in the original ship sprite, then creates a new
player (getting the sprite origin from the ship sprite.) After that two more
frames of animation are read in; this means our ship animation has three
frames. The original ship at frame zero, left is frame one and right is
frame two.

Now we have the player animation defined, we need to modify the player
update and draw methods to handle the animation. Let's first modify the
draw method. Erase the batch drawing routine and replace it with this:

public void Draw(SpriteBatch batch)
{

playerAnimation.SetPosition(position);
playerAnimation.Draw(batch);

}

Here we just tell the animation object to draw. But we want to make sure
the animation is drawn at the correct position, so before we draw it we
just update the position. This is all we need to do for the drawing

xnagamemaking.com 147

modification, next update the Update loop. The first thing to do is just to
add the playerAnimation update to the update loop. In the player Update
method add the following line:

playerAnimation.Update(gameTime);

This is the only thing we need to do to the update loop, but we need to
modify the move left and right methods to switch the animation frame.
So we'll change the TurnRight() and TurnLeft() to:

public void TurnRight()
{

playerAnimation.GotoFrame(2);
position.X += 3.0f;

}

public void TurnLeft()
{

playerAnimation.GotoFrame(1);
position.X -= 3.0f;

}

This flips the frames when turning, but now we need a way to flip back
to the original ship sprite. So we'll add the following method that resets
that we're going straight:

public void GoStraight()
{

playerAnimation.GotoFrame(0);
}

Now let's modify the Game1.cs to reflect this new method. All we'll do is
when testing if the left and right buttons are pressed if they're not then
we'll tell the player to go straight:

if (keyState.IsKeyDown(Keys.Left)
 || gamePadState.DPad.Left == ButtonState.Pressed)
{

148 A Simple Introduction to Game Programming With C# and XNA 3.1

playerShip.TurnLeft();
}
else if (keyState.IsKeyDown(Keys.Right)
 || gamePadState.DPad.Right == ButtonState.Pressed)
{

playerShip.TurnRight();
}
else
 playerShip.GoStraight();

Now if you run the program you'll see the ship change sprites when
moving left and right.

Summary

We now have some basic animation in our ship fighter game and have
seen how to create a character with animation. In the next chapter we'll
make things more complex by giving the player the ability to fire and
adding enemies to the game.

xnagamemaking.com 149

Chapter 10: Adding Firepower and Creating
Enemies

We have all of the basic elements to create a 2D game now: We know
how to draw sprites, even animate them, and have them move around
based on player input. We've also looked at how to make scrolling
backgrounds to make our game more complete. But so far we've kept
everything simple by having one basic entity, the player. In this chapter
we'll start putting more entities into the game, first putting in fire balls
the player can fire and then some enemy ships for the player to interact
with. We will cover:

 How to put in simple projectiles the player can shoot

 How to put in enemies that interact with the player.

 What collision detection is and how it works in 2D.

The complete project for this chapter is ShipFighter with Enemies at
xnagamemaking.com, but in our descriptions we'll be taking from the
ShipFighter Animation project from last chapter.

To Shoot Fireballs

The first thing we'll do is give the player the ability to shoot fireballs.
Whenever the player presses the firing key (spacebar or trigger) we'll
create a fireball at the ship's location and have it travel up the screen.
We'll have a separate class for the fireball objects, it will be simple and
just draw them and move them up. We'll also keep a list of all the fireball
objects in the game, and when the player fires it will create a new fireball
and add it to the list. Here is the listing for our Fireball class:

class Fireball
{
 Vector2 position;

 Texture2D picture;

150 A Simple Introduction to Game Programming With C# and XNA 3.1

 float speed;

 public Fireball(Texture2D firePicture, Vector2 startPosition, float

updateSpeed)
 {
 picture = firePicture;
 position = startPosition;
 speed = updateSpeed;
 }

 public Vector2 Position{ get{ return position; } }

 public void Draw(SpriteBatch batch)
 {
 batch.Draw(picture, position, null, Color.White, 0.0f, new Vector2(

10.0f, 10.0f), 1.0f, SpriteEffects.None, 1.0f);
 }

 public void Update(GameTime gameTime)
 {
 position.Y -= speed *

(float)gameTime.ElapsedGameTime.TotalSeconds;
 }
}

When we create a fireball we just pass in a picture of it to draw, a start
position, and a speed. At each update we just move the fireball up the
screen by it's current speed (moving up is subtracting from the Y in the
position). And the drawing method just draws the fireball picture at it's
current position.

Next we'll add a list to hold all of the fireballs that are running in a game,
so in the Game1.cs add the following variable:

List<Fireball> playerFireballList = new List<Fireball>();

Remember our four steps for adding something to the Game object:
declare it, initialize it, draw it and update it. The above line declares and
initializes the list, next we’ll add it to the Update loop. In the Update
method in the Game add the following:

xnagamemaking.com 151

for (int i = 0; i < playerFireballList.Count; i++)
{

playerFireballList[i].Update(gameTime);
if (playerFireballList[i].Position.Y < -100.0f)

playerFireballList.RemoveAt(i);
}

This addition just calls the update for every fireball and checks to see if it
went off screen. If the fireball is above the screen and no longer visible
we delete it. Then in the Draw loop of the game object add this:

foreach (Fireball f in playerFireballList)
f.Draw(spaceBatch);

Which just goes through every fireball in the list and draws it. We've
setup a list to add fireballs too but we're not adding them in yet. What
we'll do is whenever we press a fire button on the keyboard or gamepad
we'll create a fireball at the current player position. But to create fireball's
we'll need a texture for it, so add the file playerFireBall.png to the project.
Then put a variable for the sprite in the Game object:

Texture2D playerFireballTexture;

and initialize it in the LoadContent method:

playerFireballTexture = Content.Load<Texture2D>("playerFireball");

Since we need the player position for the fireball creation we'll need to
add a property to the Player class so we can access the position from our
game class. In the Player.cs add the following below the position
definition:

public Vector2 Position
{
 get

152 A Simple Introduction to Game Programming With C# and XNA 3.1

 {
 return position;
 }
}

Now we can get the current player position. We'll add another key press
test to the UpdateInput in the Game class that will create a fireball and
add it to the list:

if (gamePadState.Buttons.A == ButtonState.Pressed ||
 gamePadState.Triggers.Right >= 0.5f ||
 keyState.IsKeyDown(Keys.Space))
{

 Fireball shot = new Fireball(playerFireballTexture,

new Vector2(playerShip.Position.X, playerShip.Position.Y - 10.0f),
300.0f);

 playerFireballList.Add(shot);
}

If you run the program now and try firing with the spacebar you'll see
something like the following:

xnagamemaking.com 153

What we're seeing here goes back to the keyboard events not being event
driven, but polling. When we press the fire button to create a fireball we
might hold it down for maybe half a second. But our game loop is
updating at sixty times per second, so holding the key down for half a
second will create about thirty fireballs. This is because we are just
polling the keyboard and gamepad at each update. One common solution
to this is to save the previous Keyboard state, so when we update we can
see if the key was pressed in the last loop update or if it is a new key
press. But we'd like to have something here where if the player holds
down the fire button the player will continue to attack, like firing every
three seconds. To do this we'll create a buttonFireDelay variable. It will
work by at every update we'll subtract from it how much time has passed
since the last update and when we press the attack we'll set it to three
seconds. We also won't let the keyboard fire key be registered until three
seconds is up. This means when the fire button is pressed the
buttonFireDelay will be set to three seconds, and we won't be able to fire
again until three seconds is up. So in the Game class add the following
variable:

float buttonFireDelay = 0.0f;

154 A Simple Introduction to Game Programming With C# and XNA 3.1

And in the update loop we'll get how much time has passed since the last
update and subtract it from the buttonFireDelay. Add the following to
the Update loop:

float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
buttonFireDelay -= elapsed;

Then change the UpdateInput attack part to:

 if (gamePadState.Buttons.A == ButtonState.Pressed ||
 gamePadState.Triggers.Right >= 0.5f ||
 keyState.IsKeyDown(Keys.Space))
{

if (buttonFireDelay <= 0.0f)
{

Fireball shot = new Fireball(playerFireballTexture,
new Vector2(playerShip.Position.X, playerShip.Position.Y - 10.0f),
300.0f);

playerFireballList.Add(shot);
buttonFireDelay = 0.25f;

}
}

In this modification we only allow the player to fire if the
buttonfireDelay is less than or equal to zero. When the player does fire
the buttonFireDelay is set to 0.25 so we won't be able to fire again for a
quarter of a second. If you run the game now the player will fire
normally:

xnagamemaking.com 155

That sets up our player firing. Next we’ll give the player something to
shoot at.

Creating Enemies

One of the largest issues when designing games are the enemy characters
the player interacts with. Usually AI is a big issue for enemies as is
collision detection, which we'll talk more about later in the chapter. For
the moment we'll just make some basic enemies to interact with.

Our enemies will be pretty simple, just sprites that comes down the
screen. They'll also have the ability to move left and right as they travel
down, and fire at the player. For the collision detection we'll test if the
player's fireballs hit an enemy or if an enemy or enemy's fires hit the
player. (Note that two extra features originally added for the enemies
were an inheritance hierarchy for the enemies: having a base enemy class
that other more specific enemy types inherited from (this is an object-
oriented way of doing things.) The other feature was reading in an xml
file that had info for all of the enemies, when and where they are created
for the game. But putting in the class inheritance hierarchy and reading
xml was difficult for several students and slowed things down, so

156 A Simple Introduction to Game Programming With C# and XNA 3.1

versions of the ShipFighter game with these features would be a good
exercise but we won't discuss them in the text.)

Enemy Project

Now we’ll start adding the enemies to our project. The first thing to do is
add some new resources for the enemies. Add the pictures
blueEnemy.png, greenEnemy.png, and enemyFireball.png to the Content
folder of the ShipFighter project. Then create a new source file for the
enemies, we'll call Enemy.cs. Here is the code for the enemy class:

class Enemy
{
 Vector2 position;

 Texture2D picture;

 float speed = 150.0f;

 float deltaX = 0.0f;
 float xLength = 0.0f;
 float xStart = 0.0f;

 bool firingActive = false;
 bool firing = false;
 float fireSpeed = 1.0f;
 float totalTime = 0.0f;

 public bool FiringActive
 {
 set { firingActive = value; }
 }

 public bool Firing
 {
 set { firing = value; }
 get { return firing; }
 }

 public Enemy(Texture2D picture, Vector2 startPosition, float speed)
 {
 this.picture = picture;

xnagamemaking.com 157

 position = startPosition;

 this.speed = speed;
 }

 public void SetAcrossMovement(float deltaX, float xLength)
 {
 this.deltaX = deltaX;
 this.xLength = xLength;
 xStart = position.X;
 }

 public Vector2 Position {
 get { return position; }
 }

 public void Draw(SpriteBatch batch)
 {
 batch.Draw(picture, position, null, Color.White, 0.0f, new Vector2(

40.0f, 20.0f), 1.0f, SpriteEffects.None, 0.0f);
 }

 public void Update(GameTime gameTime)
 {
 float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
 position.X += deltaX * elapsed;

 if (Position.X < xStart - xLength || Position.X > xStart + xLength)
 deltaX *= -1.0f;

 position.Y += speed * elapsed;

 if (firingActive)
 {
 totalTime += elapsed;

 if (totalTime > fireSpeed)
 {
 totalTime = 0.0f;
 firing = true;
 }
 }
 }
}

158 A Simple Introduction to Game Programming With C# and XNA 3.1

Let's go through this class. The first variables we have for the enemy are
pretty straightforward:

Vector2 position;

Texture2D picture;

float speed = 150.0f;

Just a position on the screen where the enemy currently is, a Texture2D
to hold the sprite for the enemy, and a speed (still in pixels per second)
of how fast the enemy is moving down the screen. These variables are set
in the constructor for the enemy:

public Enemy(Texture2D picture, Vector2 startPosition, float speed)
{

this.picture = picture;

position = startPosition;

this.speed = speed;
}

When we create an enemy we have to give it a sprite, start position, and
speed. The next few variables are for moving the enemy left and right
across the screen:

float deltaX = 0.0f;
float xLength = 0.0f;
float xStart = 0.0f;

The deltaX is how much the enemy moves horizontally at each update
(again in pixels per second.) The next two variables handle how far across
the screen it can move. We don't want the enemy to move completely
left and right across the entire screen, so we have xLength, which is how
far it can move left or right and xStart which is the start position for the
x. So if an enemy has an xStart of 200 and an xLength of 50 it will move
left and right across the screen between 150 and 250 (at a speed of

xnagamemaking.com 159

deltaX). You can see how this works in the Update method for the
enemy, which we'll cover in a moment. The variables are set in the
SetAcrossMovement method:

public void SetAcrossMovement(float deltaX, float xLength)
{

this.deltaX = deltaX;
this.xLength = xLength;
xStart = position.X;

}

Note the xStart is just the current position of the enemy when this
method is called.

The last few variables are to handle the firing of fireballs (or in this case
lasers) by the enemy:

bool firingActive = false;
bool firing = false;
float fireSpeed = 1.0f;
float totalTime = 0.0f;

First we have two bools about firing. The firingActive is if the current
enemy can fire at all. If it is true the enemy will start firing and if it's false
it won't fire at all. The bool “firing” is if the enemy has firingActive, if it
is firing at the current update. If an enemy has firingActive then firing
will toggle true and false based on if the enemy is currently firing. The
fire speed is what frequency the enemy is firing at. At 1.0f this means the
enemy will be firing once a second. The totalTime is just an internal
counter for timing the firing. We activate firing for an enemy through the
following property:

public bool FiringActive
{

set { firingActive = value; }
}

160 A Simple Introduction to Game Programming With C# and XNA 3.1

We just set this true or false from somewhere in the game to let an
enemy start firing or not. The next property has to do when we fire:

public bool Firing
{

set { firing = value; }
get { return firing; }

}

Note there's no method here to actually fire. When we have an enemy
fire it will create a new fireball object inside of our Game, but not in the
enemy object. So in the Game object we'll test at each update if the
enemy if firing. If it is we'll create a new fireball there and set the firing
flag here back to false. This will make more sense when we look at the
Game1.cs in a bit.

That sets up the basic variables for our enemies, the next things we need
are a draw method and an update one. For the drawing we'll just take in a
spriteBatch and use it to draw the enemy at its current position:

public void Draw(SpriteBatch batch)
{

batch.Draw(picture, position, null, Color.White, 0.0f, new Vector2(40.0f,
20.0f), 1.0f, SpriteEffects.None, 0.0f);

}

The Update loop will be a little more complex. The first line just gets the
amount of time that has passed since the last update in seconds, to use in
our movement calculations:

float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;

Next we'll move the player left or right using the deltaX and the elapsed
time:

position.X += deltaX * elapsed;

xnagamemaking.com 161

Then we'll test if the player has moved enough to the left or right to
warrant switching directions:

if (Position.X < xStart - xLength || Position.X > xStart + xLength)
 deltaX *= -1.0f;

Multiplying deltaX by negative one changes its sign and causes it to move
the opposite direction.

Next move the enemy down the screen based on its speed:

 position.Y += speed * elapsed;

That takes care of the movement of the enemy. Next we need to
calculate if it should be firing or not:

if (firingActive)
{

totalTime += elapsed;

if (totalTime > fireSpeed)
{

totalTime = 0.0f;
firing = true;

}
}

This is really simple. We just say if the enemy is currently firing
(firingActive is true) then add the time that has elapsed from this update
to the current time. If this total time is more than the fireSpeed than we
should fire, which just means setting firing to true. Then we reset the
totalTime to zero so we can start counting again.

This is the class for our enemies, now let's add them to the Game. We're
going to be adding two basic enemy types to the game, a green enemy

162 A Simple Introduction to Game Programming With C# and XNA 3.1

type that moves across the screen and a blue enemy type that fires at the
player. In the Game1.cs before the player class go ahead and put the
following enum in:

public enum EnemyType
{

green,
blue

}

This enum will be handy when creating enemies since it will make clear if
we are talking about the green or blue kind. Next let's add some enemies
to Game1.cs:

Remember the four steps to adding something to our game:

1. Declare it
2. Initialize it
3. Add it to the Draw loop
4. Add it to the Update Loop

So first we'll declare some variables for our enemies. We'll need a list to
hold all of our enemies and a list to hold all of the enemy fireballs that
the blue ones shoot. We'll also need textures to hold the sprites for the
green enemy, blue enemy, and the enemy fireballs (and we'll throw in a
random number generator called rnd for use later). In the game class add
the following variables:

List<Fireball> enemyFireballList = new List<Fireball>();

// List of enemies
List<Enemy> enemyShipList = new List<Enemy>();
Texture2D enemyTextureGreen;
Texture2D enemyTextureBlue;
Texture2D enemyFireballTexture;
Random rnd = new Random();

xnagamemaking.com 163

The two lists are initialized there, but we need to load in the textures. To
initialize the sprites in the LoadContent method add the following:

enemyTextureGreen = Content.Load<Texture2D>("greenEnemy");
enemyTextureBlue = Content.Load<Texture2D>("blueEnemy");
enemyFireballTexture = Content.Load<Texture2D>("enemyFireball");

We have everything initialized, so let's draw them. To draw the enemies
we'll go through each item in the enemy list and enemy fireball list and
call their draw method:

 foreach (Fireball f in enemyFireballList)
f.Draw(spriteBatch);

foreach (Enemy e in enemyShipList)

e.Draw(spriteBatch);

That's pretty straightforward, next we need to add them to the Update
loop. To update the enemies and enemy fireballs we'll just call their
update method, and like the player fireballs we'll check both of them to
see if they've gone off screen and out of the game. If they're out of the
game we'll delete them from their list. And we'll also want to create any
enemy fireballs if any of the enemies are firing. So for each enemy if it is
firing we'll create a new enemy fireball and add it to the list:

for (int i = 0; i < enemyShipList.Count; i++)
{

enemyShipList[i].Update(gameTime);

if (enemyShipList[i].Firing)
{

Fireball fireball = new Fireball(enemyFireballTexture,
new Vector2(enemyShipList[i].Position.X + 10.0f,

enemyShipList[i].Position.Y + 30.0f), -300.0f);
enemyFireballList.Add(fireball);
enemyShipList[i].Firing = false;

}

164 A Simple Introduction to Game Programming With C# and XNA 3.1

if (enemyShipList[i].Position.Y > 900.0f)
 enemyShipList.RemoveAt(i);
}

for (int i = 0; i < enemyFireballList.Count; i++)
{

enemyFireballList[i].Update(gameTime);

if (enemyFireballList[i].Position.Y > 900.0f)
enemyFireballList.RemoveAt(i);

}

There we have it, all the enemies are setup for use in the game. Now we
need a way to create them. For the moment we'll just use keys on the
keyboard to create them. If the C key is pressed we'll create a green
enemy and if the D key is pressed we'll create a blue. We'll need a
function that creates enemies, so add the following to the Game class:

public void CreateEnemy(EnemyType enemyType)
{

Random r = new Random();
int startX = r.Next(800);
if (enemyType == EnemyType.green)
{

Enemy enemy = new Enemy(enemyTextureGreen, new
Vector2(startX, -100), 150.0f);

enemy.SetAcrossMovement((float)startX / 800.0f * 250.0f, 50.0f);
enemyShipList.Add(enemy);

}
if (enemyType == EnemyType.blue)
{

Enemy enemy = new Enemy(enemyTextureBlue, new Vector2(startX,
-100), 150.0f);

enemy.Firing = true;
enemyShipList.Add(enemy);

}
}

This function takes in an EnemyType type (green or blue from the
enum.) Then it creates a random number for the x start position:

xnagamemaking.com 165

int startX = rnd.Next(800);

The rnd is a Random number generator and the .Next(800) means to
return a number in the range 0-800. Then we use this start position for
the X and create a new enemy. We'll create either a green enemy that we
set to move left and right across the screen using the
SetAcrossMovement we described earlier or a blue enemy that we set
FiringActive to true to get it to start firing. Now we just need to add
some more cases to the updateInput function:

if (keyState.IsKeyDown(Keys.C))
 if (buttonFireDelay <= 0.0f)
 {
 CreateEnemy(EnemyType.green);
 buttonFireDelay = 0.25f;
 }

 if (keyState.IsKeyDown(Keys.D))
 if (buttonFireDelay <= 0.0f)
 {
 CreateEnemy(EnemyType.blue);
 buttonFireDelay = 0.25f;
 }

These two just check if the C or D is pressed and creates an enemy. If
you run the game and hit the C or D keys you'll see enemies fill up the
screen.

166 A Simple Introduction to Game Programming With C# and XNA 3.1

This all looks nice enough, but notice if you move the player ship around
it isn't colliding with anything, everything is acting very independently.
We need to put in collision detection, which we'll do next.

Collision Detection

Collision detection is a very famous problem, not just for video games,
but for computer science in general. The problem is given a collection of
moving objects, test if any of them have collided (or will collide) with
each other. This sounds simple enough, but in practice it can become
very difficult; in a typical game a huge percent of the CPU time is spent
on collision detection. Entire books have been written on the subject.
We'll just talk about a few basic concepts here.

The first thing to know about collision detection is when we test to see if
two objects intersect we don't do a full detail test first. If we have two 3D
models, each with thousands of polygons doing a full test (testing each
polygon to see if intersects with any other polygon) to see if the models
intersect would be very expensive. We first surround each object with a

xnagamemaking.com 167

simple geometric shape, and then test the basic shape to see if they
collide. One of the popular simple shapes is a bounding sphere. If each
object is contained in a sphere then collision detection becomes simpler.
To calculate an intersection we just test the distance between the two
objects and see if it is less than the sum of their radii:

if((position1 – position2).Length() > radius1 + radius2)
 true if they intersect

Another popular method is to use boxes, or more specifically axis-aligned
bounding boxes (aabbs). An aabb is a large box that contains an object,
with each edge of the box parallel with an axis of the coordinate system.
This kind of collision detection is good too, but we'll use the bounding
spheres.

Getting back to our game, we're going to do three things with the
collision detection:

 Detect if the enemy is hit by a player fireball, and if so delete the
enemy and the fireball.

 Detect if the player is hit by a an enemy fireball, if it is have it blink
for a few seconds.

 Detect if the player collides with an enemy. If so delete the enemy and
have the player blink for a few seconds.

The player blinking is the player going into a recovery state. Later when
we track the number of lives the player has we'll set it up so if the player
gets hit it loses a life but then becomes invincible for a few seconds,
which we'll show by having it blink.

First let's modify the enemy class so it will take in a list of player fireballs
and see if any of them hit it. To do this we'll need a radius of the enemy
ship, so add the following variable to the enemy class:

float radius = 40.0f;

168 A Simple Introduction to Game Programming With C# and XNA 3.1

public float Radius
 {

get { return radius; }
}

Why do we set a radius of forty ourselves, instead of calculating it from
the sprite? Sometimes we want to adjust the collision detection to make it
a bit more sensitive so things collide easier or looser to make the
collisions more strict (such as wanting the fireball to have to hit an enemy
near the center of it to count as a collision.) For the fireballs we'll treat
them as points, we won't bother setting any radius for them. Add the
following to the enemy class:

public int CollisionBall(List<Fireball> fireballList)
{

for(int i = 0; i < fireballList.Count; i++)
{

if ((fireballList[i].Position - position).Length() < radius)
return i;

}

return -1;
}

This takes in fireball list and then checks each one to see if it collided
with the player. If a fireball does intersect with the player it returns the
index into the list of the fireball, otherwise it returns -1. In the update
method in the Game class where we iterate through every enemy we use
this by adding the following:

int collide = enemyShipList[i].CollisionBall(playerFireballList);

if (collide != -1)
{
 enemyShipList.RemoveAt(i);
 playerFireballList.RemoveAt(collide);
}

xnagamemaking.com 169

This does what we said, it gives the enemy the playerFireballList and if
one of them hit it will delete the fireball and the enemy. This takes care
of the first case, next we need to handle the player colliding with an
enemy ship. To do this we need to add a function to test collision to the
player class, and the functionality to make it go into a recovering state.
First we'll add:

float radius = 50.0f;

float blinkTime = 0.0f;
float blinkTimeTotal = 0.0f;
bool blinkOn = false;
bool recoveringActive = false;
const float recoverLength = 3.0f;

The radius is used for collision detection, the rest for the recovering
state. The recovering state will work like this: when the player collides
with something the recoveringActive bool will be set to true and it will
stay true for the amount of time in recoverLength. While we are
recovering the blinkOn bool will represent if we are currently in the on
or off blink state and will decide if we should draw the player. The
blinkTime will track how much time has passed since we last changed
blinkOn, when it gets to a quarter second we toggle the blinking. The
blinkTotalTime tracks how much time has passed when we started
recovering and when it hits the recoverLength we'll set the recovering to
false. This is clearer if you look at the new code for the Update method
for the player:

if (recoveringActive)
{

const float blinkTimeSlice = 1.0f / 15.0f;
float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
blinkTime += elapsed;
blinkTimeTotal += elapsed;
if (blinkTimeTotal > recoverLength)

recoveringActive = false;
else
{

if (blinkTime > blinkTimeSlice)
{

170 A Simple Introduction to Game Programming With C# and XNA 3.1

blinkOn = !blinkOn;
blinkTime = 0.0f;

}
}

}

Here we take the time from the last update and add it to the blinkTime
and blinkTimeTotal. If blinkTimeTotal is greater than the recovery
length we turn the recovering (blinking) off. Else we just test if enough
time has passed to toggle the current state of the blink – visible or
invisible.

Next we need a method for the player to test for collisions with other
objects. To the Player class we add:

public bool CollisionTest(Vector2 point, float radius)
{

if ((point - position).Length() < this.radius + radius)
{

if (!recoveringActive)
{

recoveringActive = true;
blinkTimeTotal = 0.0f;

}
return true;

}
return false;

}

This method takes in a point and a radius and does our basic bounding
sphere calculation to test for a collision. If we have a collision and we are
not currently in a recovery state we send the player into the recovering
state by setting recoveringActive to true and resetting the blinkTimeTotal
back to zero. The function returns if we had a collision true or false.

To use this for if the player gets hit with an enemy fireball we'll change
the following to the main Update loop in our Game.cs:

xnagamemaking.com 171

for (int i = 0; i < enemyFireballList.Count; i++)
{

enemyFireballList[i].Update(gameTime);
playerShip.CollisionTest(enemyFireballList[i].Position, 20.0f);

}

In this update we go through every enemy fireball and test to see if it
collided with the player. The player's collision test will send it into its
recovery state if it has.

Lastly we'll test to see if any enemy collided with the player, and if so
delete it and send the player into the recovery state. To do this we'll add a
little to our enemy collision code from the Update method in the Game:

int collide = enemyShipList[i].CollisionBall(playerFireballList);

if (collide != -1)
{

enemyShipList.RemoveAt(i);
playerFireballList.RemoveAt(collide);

}
else
if (playerShip.CollisionTest(enemyShipList[i].Position,
enemyShipList[i].Radius))
{

enemyShipList.RemoveAt(i);
}
else if (enemyShipList[i].Position.Y > 2000.0f)

enemyShipList.RemoveAt(i);

This is the same as before, but with the addition of the else clause. Here
we test each enemy to see if it hits the player, if it does it gets deleted and
the player's CollisionTest takes it to the recovery state. We also put in a
little test to see if the enemy is far off screen, and if it is we won't see it in
the game anymore and we'll delete it.

If you run the game you'll find all of the collision detection working.
When we fire at enemies they disappear and the player reacts to being hit

172 A Simple Introduction to Game Programming With C# and XNA 3.1

by other enemies. One last thing to do is to have the enemies be created
in a slightly better way than just through keyboard presses.

One simple way to do this is to just use a timer function. We'll just track
how much time has passed in the game total and at certain intervals
create new enemies. Specifically, in the game class we'll add the following
variable:

float totalTime = 0.0f;

and in the Update loop we'll add to it:

 float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
 totalTime += elapsed;

Then we'll add a little function:

public void CreateEnemyTime()
{

if (totalTime > 1.0f && totalTime < 1.01f)
CreateEnemy(EnemyType.blue);

if (totalTime > 2.2f && totalTime < 2.21f)

for (int i = 0; i < 4; i++)
CreateEnemy(EnemyType.green);

if (totalTime > 7.2f && totalTime < 7.21f)

for (int i = 0; i < 7; i++)
CreateEnemy(EnemyType.blue);

}

And add a line in the Update loop to call it. This is pretty simple, just
checking the total time and creating enemies when enough time has
passed. Again, look on xnagamemaking.com to see a more advanced
version of this.

xnagamemaking.com 173

Summary

That wraps up putting enemies in the game. We almost have a fully
featured game, but there are still a few things to take care of. In the next
chapter we'll add some splash screens, HUD text, and explosion effects.

174 A Simple Introduction to Game Programming With C# and XNA 3.1

xnagamemaking.com 175

Chapter 11: Adding HUD Text, Splash Screens, and
Special Effects

Our game is getting close to being complete. But there are still a few
elements that are important and need to go in the game. The first is
adding some text to our display. We'll add a little point counter and live
counter. We'll also need a simple menu system, which for now will be
just a few splash screens. Lastly we want to add in some special effects,
and we'll add an explosion effect using particle systems. The goals for
this chapter are:

 Learn how to draw text on a HUD (Heads Up Display.)

 Add some simple splash screens to the game.

 Learn what particle systems are and use them to create explosion
effects.

Adding HUD Text

What we mean by adding HUD text is pretty straightforward, we are just
going to go over how to add some text displayed at various parts of the
screen. The way we'll do this is to create an object called a Sprite Font.
This object reads in a font from our system and uses it to create text in
our game (which means you have to be careful about legal issues, as fonts
on your system are copyrighted and may not be distributable. Check at
Microsoft's XNA's sight for more details.)

To add text to the screen we'll do the following (which is adapted from
the XNA documentation):

Right-click on the Content folder in Solution Explorer, click Add, and
then click New Item. Choose Sprite Font from the Add New Item dialog
box. Name the Sprite Font ShipFont, since it will be the only font we're
using for the game. XNA creates the font and double click it to open it.
You'll see an xml file with several fields:

176 A Simple Introduction to Game Programming With C# and XNA 3.1

 <!--
 Modify this string to change the font that will be imported.
 -->
 <FontName>SpriteFont1</FontName>

 <!--
 Size is a float value, measured in points. Modify this value to change
 the size of the font.
 -->
 <Size>14</Size>

 <!--
 Spacing is a float value, measured in pixels. Modify this value to change
 the amount of spacing in between characters.
 -->
 <Spacing>2</Spacing>

 <!--
 Style controls the style of the font. Valid entries are "Regular", "Bold",
"Italic",
 and "Bold, Italic", and are case sensitive.
 -->
 <Style>Regular</Style>

This is the file XNA parses to create text for the screen. In the
FontName element where it says SpriteFont1 delete that and put in
Courier New. This is the font we'll be using for the ship game, but you
can put the name of any font you have on your machine. Then they are a
few other elements to describe the text you can change, such as the size,
spacing, and if it should be bold or italic. We'll leave these to their
defaults, but play around with them to see different text effects.

Next let's add the sprite to our game. But before that we'll add two more
variables, one in the player class and one in the game class for the
information we want to display. For the player we'll keep track of lives.
We'll just create a variable called lives, set it to a default number (5) and
every time the player is hit by something we'll subtract one from it. So int
the Player.cs add the following:

xnagamemaking.com 177

 // Total number of lives
int lives = 5;

public int Lives
{

set { lives = value; }
get { return lives; }

}

We put in the Lives property so we can access the number of lives from
outside the player class. Next we'll change the CollisionTest method to
the following:

 public bool CollisionTest(Vector2 point, float radius)
 {

if ((point - position).Length() < this.radius + radius)
{

if (!recoveringActive)
{

lives--;
recoveringActive = true;
blinkTimeTotal = 0.0f;

}
return true;

}
return false;

}

The only difference here from the original is the addition of the line
lives--; So when we are hit with something the number of lives now gets
decremented once.

Next we'll keep track of the total number of points for our player. We'll
have a variable called points in the Game class:

// Keep track of the points for the player
float points = 0;

And we'll add to it whenever we hit an enemy:

178 A Simple Introduction to Game Programming With C# and XNA 3.1

if (collide != -1)
{
 enemyShipList.RemoveAt(i);
 playerFireballList.RemoveAt(collide);
 points += 200;
}

Here we just add 200 points every time an enemy is hit.

That sets us up for what we want to display for text on the screen, now
to display it all. We'll keep the number of lives in the upper left corner of
the screen and the total points in the upper right. So besides the Sprite
Text object we'll need two position vectors. In the Game class add the
following variables:

SpriteFont CourierNew;

// Location to draw the text
Vector2 textLeft;
Vector2 textMiddle;

CourierNew is the Sprite Font we created before and the other two are
the text position vectors. To initialize them add the following to
LoadContent():

 // Create the font
 CourierNew = Content.Load<SpriteFont>("ShipFont");

 // Set text positions
textMiddle = new Vector2(graphics.GraphicsDevice.Viewport.Width / 1.3f,
graphics.GraphicsDevice.Viewport.Height / 30);
textLeft = new Vector2(graphics.GraphicsDevice.Viewport.Width / 30,
 graphics.GraphicsDevice.Viewport.Height / 30);

This just creates the font and the two position Vectors. The text position
vectors use some rough calculations based on the window width to find
their location. Next we'll add the following function to the Game class:

xnagamemaking.com 179

public void DrawText(SpriteBatch TextBatch)
{

string output = "Lives: " + playerShip.Lives.ToString();

TextBatch.DrawString(CourierNew, output, textLeft, Color.White);

string pointString = points.ToString();

for (int i = pointString.Length; i < 8; i++)
pointString = "0" + pointString;

pointString = "Points: " + pointString;

TextBatch.DrawString(CourierNew, pointString, textMiddle, Color.White);

}

The main part of this is the SpriteBatch.DrawString() method. It works
by calling the following:

spriteBatch.DrawString(SpriteFont, string textToPrint, Vector2 position, Text
Color);

This method is simple enough, we just tell the SpriteBatch what font we
want to use for the text, then give it a string of text to draw on the
screen. We also tell it a position for the text and a color for it. In our ship
game we use DrawText to draw the lives and points. The output looks
like:

180 A Simple Introduction to Game Programming With C# and XNA 3.1

Adding Splash Screens

Now we have some HUD text up, let's add some splash screens. We'll
add a start screen and an end screen, to make the game more complete
for now.

But what we're really adding is more states to our game. If you recall the
discussion from early in this section we can think of things in a game
based on what state they are currently in. For the Ship Fighter game we'll
create three possible states the game can be in, a start state: that occurs
when you start the game, a running state that is when the game is running
(so far all of our games have just been in the running state) and an end
state, that occurs when the player runs out of lives or runs out of time
(we'll put in a timeout feature.) The start state will just draw a big sprite
over the entire screen and wait for a key press. The end state will also just
draw another splash screen and wait for a key press to restart.

To start add the following enum to Game1.cs:

xnagamemaking.com 181

public enum GameState
{
 StartScreen,
 Running,
 EndScreen
}

This structure is called an enum. Enums work by creating a variable
name and list of values. Then we can create a variable of the type and it
can only have the values we specified. This is clearer if you look at the
one we make for the game state; it helps us write code for the different
states we can be in. In the game class we'll add a variable to track the
current state:

GameState gameState = GameState.StartScreen;

The variable gameState can have one of three values, StartScreen,
Running, or EndScreen. Let's go ahead and add the variables to hold the
sprites for our splash screens and a float to track the entire time and the
totalTime the game can run (endTime):

// total time tracker and endTime (timeout)
float endTime = 10.0f;

// Textures for our splash screen
Texture2D startScreen;
Texture2D endScreen;

For the two textures we'll need to load them in the LoadContent method:

startScreen = content.Load<Texture2D>("startGameSplash");
endScreen = content.Load<Texture2D>("endGameSplash");

For the different game states we'll choose between them by using ifs in
the Draw and Update loop based on the current game state. For the
Draw it will just be:

182 A Simple Introduction to Game Programming With C# and XNA 3.1

 protected override void Draw(GameTime gameTime)
 {
 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 if (gameState == GameState.StartScreen)
 {
 DrawStartScreen();
 }
 else if (gameState == GameState.Running)
 {
 spaceBackground.Draw();

 spriteBatch.Begin();

 foreach (Fireball f in playerFireballList)
 f.Draw(spriteBatch);

 playerShip.Draw(spriteBatch);

 foreach (Fireball f in enemyFireballList)
 f.Draw(spriteBatch);

 foreach (Enemy e in enemyShipList)
 e.Draw(spriteBatch);

 DrawText(spriteBatch);

 spriteBatch.End();
 }
 else if (gameState == GameState.EndScreen)
 {
 DrawEndScreen();
 }
 base.Draw(gameTime);
 }

We just switch what we're doing based on the current state. If the current
state is StartScreen we call

DrawStartScreen (a method we need to add). If we're in the running state
we just draw as we were before. And if we're in the Endstate we draw the
endscreen. The DrawStartScreen and DrawEndScreen methods are
pretty simple, they just draw the appropriate sprite onscreen:

xnagamemaking.com 183

// Draw the start screen
private void DrawStartScreen()
{

spriteBatch.Begin();

spriteBatch.Draw(startScreen, Vector2.Zero, null, Color.White);

spriteBatch.End();

}

// Draw the end screen
private void DrawEndScreen()
{

spriteBatch.Begin();

spriteBatch.Draw(endScreen, Vector2.Zero, null, Color.White);

spriteBatch.End();
}

Likewise for the Update loop we'll toggle what we do based on the
current state. After the time Update in the Update loop we add the
following:

 // If we are starting or ending just update Splash screen
if (gameState == GameState.StartScreen || gameState ==
GameState.EndScreen)
 UpdateSplashScreen();
else // GameState is running
{

And the rest of this is just the regular Update loop. So if we are not in the
running state we just call the update function as usual, but we'll add a line
to check if the player lives are below zero, if they are we'll set the state to
End. When the game is over we also want to reset our game to a start
state. We’ll put the player back in its start position and clear out all of the
enemies and fireballs. Here is the code:

if (playerShip.Lives < 0 || totalTime > endTime)
{

gameState = GameState.EndScreen;
 playerShip.Position = new Vector2(400.0f, 500.0f);

184 A Simple Introduction to Game Programming With C# and XNA 3.1

 enemyFireballList.Clear();
 enemyShipList.Clear();

playerFireballList.Clear();
}

For the UpdateSplashScreen method we'll see if the start button on the
Xbox controller is hit or if the space bar is pressed on the keyboard. If
either of those is true we just switch the current state to running.

private void UpdateSplashScreen()
{

KeyboardState keyState = Keyboard.GetState();
if (GamePad.GetState(PlayerIndex.One).Buttons.Start ==

ButtonState.Pressed || keyState.IsKeyDown(Keys.Space))
 {
 gameState = GameState.Running;
 totalTime = 0.0f;
 }
}

Now if you run the game you get

xnagamemaking.com 185

We have a pretty complete game setup so far. Once last feature is a
special effect. The special effect we'll add in is a particle explosion for
whenever the enemy ships are hit. Next let's take a look at particle
systems.

Particle Systems

Some effects we want to model in video games are made up of many
small pieces, particles, interacting. Water and smoke (and explosions) are
examples of this. To create explosions we could create an animation,
drawing out every frame of the animation. The problem with that
approach is that each explosion should be a little bit different. Another
approach is to use particle systems. Particle systems can get very
complex, but the basic concept is pretty simple. You create a list of
particles, each one having a start state (color), end state, and velocity.
Over time you update each particle individually and this creates an effect
overall. For the explosion effect in our game here is a simple source file,
BasicParticleSystem.cs, that does this for explosions:

class Particle
{

Vector4 color;
Vector4 startColor;
Vector4 endColor;
TimeSpan endTime = TimeSpan.Zero;
TimeSpan lifetime;
public Vector3 position;
Vector3 velocity;
protected Vector3 acceleration = new Vector3(1.0f, 1.0f, 1.0f);

public bool Delete;
public Vector4 Color
{

get
{

return color;
}

}

186 A Simple Introduction to Game Programming With C# and XNA 3.1

public Particle(Vector2 position2, Vector2 velocity2, Vector4 startColor,
Vector4 endColor, TimeSpan lifetime)

{
 velocity = new Vector3(velocity2, 0.0f);
 position = new Vector3(position2, 0.0f);
 this.startColor = startColor;
 this.endColor = endColor;
 this.lifetime = lifetime;

}

public void Update(TimeSpan time, TimeSpan elapsedTime)
{

//Start the animation 1st time round
if (endTime == TimeSpan.Zero)
{

endTime = time + lifetime;
}
if (time > endTime)
{

Delete = true;
}
float percentLife = (float)((endTime.TotalSeconds - time.TotalSeconds)

/ lifetime.TotalSeconds);

color = Vector4.Lerp(endColor, startColor, percentLife);

velocity += Vector3.Multiply(acceleration,
(float)elapsedTime.TotalSeconds);

position += Vector3.Multiply(velocity,

(float)elapsedTime.TotalSeconds);
 }
 }

class BasicParticleSystem
{

static Random random = new Random();

List<Particle> particleList = new List<Particle>();

Texture2D circle;
int Count = 0;

public BasicParticleSystem(Texture2D circle)
{

xnagamemaking.com 187

this.circle = circle;
}

public void AddExplosion(Vector2 position)
{

for (int i = 0; i < 300; i++)
{

Vector2 velocity2 = (float)random.Next(100) *
Vector2.Normalize(new Vector2((float)(random.NextDouble() –

.5), (float)(random.NextDouble() - .5)));

particleList.Add(new Particle(
 position,
 velocity2,

 (i > 70) ? new Vector4(1.0f, 0f, 0f, 1) : new Vector4(.941f,
.845f, 0f, 1),

 new Vector4(.2f, .2f, .2f, 0f),
 new TimeSpan(0, 0, 0, 0, random.Next(1000) + 500)));
 Count++;

}
}

public void Update(TimeSpan time, TimeSpan elapsed)
{

if (Count > 0)
{

for(int i = 0; i < particleList.Count; i++)
{

particleList[i].Update(time, elapsed);

if (particleList[i].Delete) particleList.RemoveAt(i);
}

Count = particleList.Count;

 }
 }

public void Draw(SpriteBatch batch)
{

if (Count != 0)
{

int particleCount = 0;

 foreach (Particle particle in particleList)

188 A Simple Introduction to Game Programming With C# and XNA 3.1

 {
 batch.Draw(circle,

 new Vector2(particle.position.X, particle.position.Y),
 null, new Color(((Particle)particle).Color), 0,
 new Vector2(16, 16), .2f,
 SpriteEffects.None, particle.position.Z);
 particleCount++;
 }
 }
 }
 }

Again, we won’t step through this code but looking at it quickly you can
see that it has a particle class and a BasicParticleSystem class that let’s us
add an explosion and draw/update it. If you add this file to the
ShipFighter project then adding it to the Game class is pretty
straightforward. (Also add in the “circle.tga” art file to the project, as
we’ll use this for the picture for our particles.) First in the Game class add
the following variable:

BasicParticleSystem particleSystem;
TimeSpan totalTimeSpan = new TimeSpan();

This declares our particle system. We are also going to be using a time
variable to track the overall time for updating our system, so we added
the totalTimeSpan structure. The next step is to initialize the particle
system. In the LoadContent method of the game class add in:

particleSystem = new
BasicParticleSystem(Content.Load<Texture2D>("circle"));

This creates our particle system. Then we need to draw and update it. In
the draw loop where we are using our spaceSpriteBatch add the
following:

particleSystem.Draw(spriteBatch);

And in the update loop add:

xnagamemaking.com 189

totalTimeSpan += gameTime.ElapsedGameTime;
particleSystem.Update(totalTimeSpan, gameTime.ElapsedGameTime);

This updates our time for the system and the particle system itself. The
last thing to do is to add an explosion to the system whenever an enemy
is hit by a fireball or crashes into the player. Here is a modification of the
collision detection part of the update loop that does this:

int collide = enemyShipList[i].CollisionBall(playerFireballList);

if (collide != -1)
{

particleSystem.AddExplosion(enemyShipList[i].Position);

enemyShipList.RemoveAt(i);
playerFireballList.RemoveAt(collide);
points += 200;

}
else
if (playerShip.CollisionTest(enemyShipList[i].Position,
enemyShipList[i].Radius))
{

particleSystem.AddExplosion(enemyShipList[i].Position);
enemyShipList.RemoveAt(i);

}
else if (enemyShipList[i].Position.Y > 2000.0f)

enemyShipList.RemoveAt(i);

This sets up our explosions. If you run the game now you’ll see them
whenever you hit an enemy:

190 A Simple Introduction to Game Programming With C# and XNA 3.1

End

This brings us to the end of the game Ship Fighter. We’ve only scratched
the surface of game programming. Good luck in future game
programming.

