
Crash course to

Qt Quick™ Game
Programming

Qt Quick Game Programming © 2010 QUIt Coding

About this document

This tutorial has been written in co-
operation between NOMOVOK and Quit
Coding.

QUIt Coding is an official member of the
Qt Ambassador Program. As ambassadors,
we are committed to continue providing
extraordinary user experience with Qt.

Thanks to Nokia/Qt people for delivering
the best platform to build mobile software
with!

For a feedback about this document,
please contact info@quitcoding.com

Version: 1.0 - October 24, 2010

Copyright © 2010 QUIt Coding.

Nokia, Qt and their respective logos are trademarks of Nokia Corporation in Finland and/or other
countries worldwide.

Cover images are public domain and courtesy of NASA. "Lunar Roving Vehicle" is from Apollo 17
mission and "Bootprint" from Apollo 11 mission.

This document is licensed under the Creative Commons Attribution-Share Alike 3.0 license. For
more information, see http://creativecommons.org/licenses/by-sa/3.0/legalcode for the full
terms of the license.

2

mailto:info@quitcoding.com
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Qt Quick Game Programming © 2010 QUIt Coding

Table of Contents

Introduction..4

What is Qt Quick?...4

Hello QML!...5

Separation between QML UI and the application logic...................................7

Implementing 5-in-a-row game..9

Main UI ..9

Main menu and controls...12

Game board and animations...15

Game data structures..23

OpenGL usage and Fluid 3D..28

Summary...31

3

Qt Quick Game Programming © 2010 QUIt Coding

Introduction
This tutorial is a crash course into Qt
Quick development using the latest Qt
4.7 release. We'll first introduce briefly
what Qt Quick is, and then dig into
implementation details of a game
called 5-in-a-row. The user interface of
5-in-a-row is written in QML, which is
the declarative language behind Qt
Quick, while the game logic is
implemented with standard Qt C++.

Readers of this tutorial are expected to be already familiar with Qt. Detailed
documentation about Qt Quick is also out of scope for this tutorial. Please refer to
Qt Reference Documentation while proceeding to get more detailed information.
It is the best friend of any serious Qt developer1

Full source code of 5-in-a-row game as well as a Debian package for N900 are
available from http://quitcoding.com. For best learning experience, we
recommend opening the sources with your favorite editor and following the code
while reading this tutorial. In case you haven't already customized yourself with
any specific editor / IDE, we warmly recommend using Qt Creator which
integrates extremely well with Qt & QML development. Experimenting by doing
small changes in the code and observing the outcome should help to get the
essence of Qt Quick in no time.

After reading this tutorial, one should have gained a solid Qt Quick knowledge to
continue the journey. So let's start!

What is Qt Quick?
Qt Quick is the marketing name for a new declarative UI framework, which has
been developed with multiple code names such as “Qt Declarative UI”, “Qt
Kinetic” and “QML”. It provides tools for building highly dynamic and animated
user interfaces in fraction of the time it would take to build the same UI using
traditional imperative methods. It also helps designers and developers to co-
operate more effectively as developers can concentrate on the application logic
(C++ or JavaScript) providing necessary properties and signals/slots, and let the
designers do their magic creating spectacular user interface for the application
with QML.

1 Qt Reference Documentation - http://doc.qt.nokia.com/4.7/

4

http://quitcoding.com/

Qt Quick Game Programming © 2010 QUIt Coding

So what does Qt Quick contain:

• New declarative language for defining user interfaces called QML. Despite
the fact that the name resembles XML, QML is not XML-based but instead
uses a JSON (JavaScript Object Notation) syntax with some added sugar.
Compared to XML, it is faster for machines to parse and easier for humans
to read & write (less typing!). Thanks to Web 2.0, JSON is widely used for
serializing and transmitting structured data over a network connection.

• QtDeclarative module, which implements an interface between the QML
language and the elements available to it. This module also provides a C++
API that can be used to load and interact with QML files from within Qt
applications. QtDeclarative is implemented using QGraphicsView framework
and QML components are QGraphicsObjects.

• Integration with the Qt Creator IDE to help writing QML as well as full visual
drag-and-drop editor to build user interfaces using QML elements, creating
application layouts with states, animations for transitions between states
etc. Visual designer for QML is under work and not fully usable yet, but it's
getting there and even without it, using Qt Creator accelerates writing QML
thanks to syntax highlighting, integrated qmlviewer usage etc.

Qt Quick is designed for custom, animated user interfaces which have become
ever so common in mobile phones, set-top boxes, netbooks and other modern
consumer devices. Current QtDeclarative module provided with Qt 4.7 contains a
wide set of different QML elements (Rectangle, Image, Flickable etc.) but not (at
least yet) any higher level widgets (like button, menus etc.).

Fortunately building own user interfaces and widgets with QML is very fast and
straightforward so enough talking and let's start coding!

Hello QML!
To get an understanding of what QML is like, we'll start by implementing a very
simple QML application.

import QtQuick 1.0

Rectangle {
 id: panel
 width: 400
 height: 200
 color: "#D0D0D0"

5

Qt Quick Game Programming © 2010 QUIt Coding

 Text {
 id: helloText
 text: "Hello QML!"
 color: "red"
 font.pointSize: 24
 anchors.centerIn: parent
 }
}

As you see, syntax is very similar to JSON and contains mostly property: value
pairs. Let's now go through it in pieces to understand the basics.

import QtQuick 1.0

This line imports the built-in QML types (Rectangle, Image, ...) that come with Qt
and all the QML files must start with this line. In Qt 4.7.0 the correct line to use
was “import Qt 4.7”, but since Qt 4.7.1 “QtQuick” should be used instead.

Specifying the version number is important for compatibility. It guarantees that
the behavior of the code won't change as QML language will be extended in the
future with new elements and features. Any features from newer versions will not
be used, even if available. Version number should also be used when importing
own custom components. We'll tell more about this in the following chapters.

Rectangle {
 id: panel
 width: 400
 height: 200
 color: "#D0D0D0"

This creates a Rectangle of width 400 pixels and height 200 pixels. We give the
rectangle an id “panel” to be able to reference it from other places. Color used to
fill the rectangle is RGB "#D0D0D0" (light gray).

 Text {
 id: helloText
 text: "Hello QML!"
 color: "red"
 font.pointSize: 24
 anchors.centerIn: parent
 }

Then we create a new Text element inside our rectangle. It will be initialized with
red “Hello QML!” text with font size of 24pt, and is anchored to the center of the
parent rectangle item. Anchoring items relatively to each others is one of the

6

Qt Quick Game Programming © 2010 QUIt Coding

powerful features of QML and makes layouting easy and intuitive.

To run this example, save it as “hello.qml” and use qmlviewer binary provided in
the Qt SDK:

kaj@T61KG:~/qml_hello$ qmlviewer hello.qml

What you should get is a red text in the center of a light gray rectangle,
something similar to this:

Of course this only grasped the surface of what QML can do but we'll get deeper
soon. All you need to know right now is that writing QML is easy and fun!

Separation between QML UI and the application logic
User interface is just the visual part of the application and real applications need
also some functionality underneath it. QML steers quite naturally into cleaner
separation of UI and the application logic so using it enhances the software
architecture.

There are mainly three ways to implement the application logic:

• JavaScript: All QML applications use JavaScript (ECMAScript) by nature,
and it is also possible to write the whole application logic with it. This suits
especially well for simple applications that don't require system services, as
JavaScript has limited access outside its sandbox. One pro is also that
applications using plain JavaScript are totally platform independent and
don't need to be compiled. It is even possible to run these applications
through network with qmlviewer just like running web applications with a
browser.

• C++ application: Second option is building the application logic with Qt

7

Qt Quick Game Programming © 2010 QUIt Coding

C++, creating QDeclarativeView, and loading QML UI into it. QML and C++
sides will communicate with each other through Qt Signals and Slots as well
as Qt Properties. This is the most powerful option where QML elements
(QDeclarativeItems) can be accessed from C++. But the power comes with
a cost of dependency into QGraphicsView architecture and a risk of mixing
user interface with the application logic. As always, good architectural
decisions will keep things clean and mean.

• C++ plugins: Third option is to provide the application logic as plugin
libraries built by implementing own QDeclarativeExtensionPlugin based
classes. This method forces cleaner separation of UI and logic, while
applications are still launched with 'qmlviewer' binary provided in the Qt
SDK. The plugins are taken into use with “import com.quitcoding.MyPlugin
1.0” kind of line in the beginning of QML files.

Which one of these to use depends on the needs and it's even possible to mix and
match different options. For example one popular approach is to use JavaScript
for implementing the parts of the application logic which are coupled with the
QML UI, and then use C++ plugins for features that need to access system
services.

In the next chapter we use the second option to implement our game logic. This
decision is made mainly for educational purposes and there are no technical
restrictions that would prevent us from using any of the before mentioned
techniques.

8

Qt Quick Game Programming © 2010 QUIt Coding

Implementing 5-in-a-row game
The application we implement is a 5-in-a-row game with user interface written in
QML. Although QML is not specifically developed for games, it suits well for our
needs to create an animated, nice looking game. Below is a screenshot of the end
result.

Screenshot of 5-in-a-row in the game mode.

In the following subchapters we go though in detail the most important parts of
the implementation of this game, starting from the QML UI and switching then to
the C++ application logic. We demonstrate a big variety of QML components and
how they are used as well as layouting in QML, creating animations,
communicating between QML and C++ with signals/slots and properties, and
much more.

As mentioned earlier, the source code of the game is freely available from
http://quitcoding.com and we recommend to follow the code while proceeding
with this tutorial for best learning experience.

Main UI
The main QML file is called MainView.qml. It is the one which gets opened into
our view and handles loading of all other components. For the ones familiar with
web development, a corresponding analogy would be loading of “index.html” or a

9

http://quitcoding.com/

Qt Quick Game Programming © 2010 QUIt Coding

similar main page.

Let's start by going through the important parts of MainView.qml first.

import QtQuick 1.0

Item {
 width: 800
 height: 480

 // *** Game View ***
 GameView {
 id: gameView
 // Gameview is disabled when gameViewHider is shown
 enabled: gameViewHider.state == "hide"
 }

First we import all the QtQuick 1.0 QML elements and create our root Item. Items
are the most basic QML components without any visible appearance. Items have
a position and dimensions, and thus they are often used to group and layout
visual components.

We aim to make our game scalable into different screen sizes so width and height
here are just the default values which suit Nokia N900. Later when we create a
QDeclarativeView, we will set it to automatically resize the root item to its
dimensions.

GameView is our first own element and we enable it to receive mouse events only
when the gameViewHider component is not shown.

 // *** Game View Hider ***
 Rectangle {
 id: gameViewHider
 anchors.fill: parent
 color: "black"
 opacity: 0.7

The following rectangle is this gameViewHider which state we just bound to the
gameView's enabled property. Its purpose is to darken the screen when a menu is
shown. That's why it is black with partial opacity in the default state. States and
transitions are important parts of QML and the gameViewHider has those defined
as will be seen next.

 states: [
 State {

10

Qt Quick Game Programming © 2010 QUIt Coding

 name: "hide"
 when: menuPanel.state == "hide"
 PropertyChanges {
 target: gameViewHider
 opacity: 0
 }
 }
]

 transitions: Transition {
 NumberAnimation {
 properties: "opacity"
 duration: 400
 }
 }
 }

First we create a state called “hide” and define that in this state gameViewHider's
opacity is changed to 0, meaning fully transparent. With the “when” property, the
state is synchronized to be on when the menuPanel gets hidden. So when the
menuPanel is hidden, also the gameViewHider is hidden and thus the gameView
is enabled.

We could implement a second state for “show” but it is not necessary as all items
already have a default empty state (“”) which means “state of the item in the
beginning, when no other state is on”. Based on this information, when we want
to show the gameViewHider we can request it to change into state “” and the
opacity changes back to 0.7 which was defined earlier to be the default opacity.
This will now happen automatically when the menuPanel's state is not “hide”.

The transitions provide animations when switching between states. Without
defining this transition, the opacity change would be instant, but we of course
want it to fade in and out smoothly. The property we want to animate is naturally
“opacity” and we define the transition to take place in 400 milliseconds.

 // *** Main Menu panel ***
 MenuPanel {
 id: menuPanel
 }
}

The order of the elements in a QML file has importance as the later ones will be
drawn on top of the earlier ones. This is why we define the gameViewHider after
the gameView and only after those, our main game menu MenuPanel, as it needs
to be drawn on top of the other elements.

11

Qt Quick Game Programming © 2010 QUIt Coding

All visible QML components inherit the Item component and it's properties,
including “z” which sets the stacking order of the item. This property can be used
to stack items arbitrarily regardless of the order they are declared in. However, as
we have declared the items in the order we want them to be drawn, we don't
have to set the “z” properties.

Main menu and controls
So let's jump then to look into the implementation of the MenuPanel which is
presented in the screenshot below (Notice also the gameViewHider in action).

The implementation starts from a file called MenuPanel.qml as QML automatically
gives all *.qml files within the same directory the visibility to be included into
your application. Just remember to name all QML files starting with a capital letter
and use them without the .qml suffix, just like we did with the MenuPanel in
MainView.qml.

import QtQuick 1.0

Item {
 id: menuPanel
 ...
 property bool fluid3D: switch3D.on

 Item {

12

Qt Quick Game Programming © 2010 QUIt Coding

 id: minimizeButton
 width: 80; height: 80
 anchors.top: parent.top
 anchors.left: parent.left
 Image {
 source: "images/minimize.png"
 anchors.centerIn: parent
 }
 MouseArea {
 anchors.fill: parent
 onClicked: {
 mainWidget.minimizeWindow();
 }
 }
 }

In the MenuPanel, we declare our own boolean type property “fluid3D”, which will
be explained later. The first item in the MenuPanel is referred as minimizeButton.
We could have created a separate component file for this kind of button but as we
only have minimizeButton and exitButton of the similar type, we decided this time
not to do so.

The anchoring lines here are in fact unnecessary as the parent's top-left corner is
the default anchoring position for an item. They are just shown here for clarity.

We declare an image into the center of the item and create a MouseArea to listen
for click events inside the whole button area. Whenever the button is clicked, we
call the minimizeWindow() slot of the mainWidget C++ class, which we will
implement later and export to be visible in the QML context.

We can skip the details of the exitButton implementation as it is almost identical
to the minimizeButton.

 Frame {
 id: menuPanelFrame
 width: 540
 height: 370
 anchors.centerIn: parent

 Image {
 id: gameLogo
 ...
 }

 Row {
 ...

13

Qt Quick Game Programming © 2010 QUIt Coding

 Frame {
 id: aboutArea
 ...
 }

Next we add a Frame which creates a nicely themed background for our
menuPanelFrame (see the details from Frame.qml). The declarations of the logo
image and the flickable aboutArea are quite self-explanatory and not important
for the functionality, so we skip those here. See the sources for the detailed
implementation.

 Column {
 width: parent.width ­ aboutArea.width – 10
 spacing: 10

 Button {
 id: button1PlayerGame
 text: "1 Player Game"
 disabled: true
 onClicked: {
 // TODO: Implement 1 player game
 }
 }
 Button {
 id: button2PlayerGame
 text: "2 Players Game"
 onClicked: {
 gameData.resetGame()
 gameView.centerBoard()
 menuPanel.state = "hide"
 gameData.pauseGame(false)
 }
 }

Next we implement the right side of the menu panel which contains all the
buttons. We use a Column with 10 pixels of spacing as the layout here. Please see
the file Button.qml for details about the implementation of the Button component.

The one player game was left as an implementation exercise for the reader, so
the button is set to be disabled. The two player game button, however, resets the
game data, centers the board, hides the menuPanel and toggles the game on.

 Switch {
 id: switch3D
 textOff: "2D"

14

Qt Quick Game Programming © 2010 QUIt Coding

 textOn: "3D"
 }
 Button {
 id: buttonContinue
 text: "Continue Game"
 disabled: {
 if (!gameData.gameOn)
 return true
 else
 return false
 }
 onClicked: {
 menuPanel.state = "hide"
 gameData.pauseGame(false)
 }
 }
 }
 }

Similarly to the Button, the Switch is also our own QML component, implemented
in Switch.qml file. The current state of this switch is connected to fluid3D
property that we declare in the beginning of the file.

The continue button is made to be disabled when the game is not running. When
clicked, it will behave similarly to game starting button except that it will not
reset the game data or scroll board to the center.

The MenuPanel has also a “hide” state with a transition, where it is moved up,
away from the screen, while simultaneously fading it to transparent. The
implementation of this is similar to the one in the gameViewHider so we can
bravely move ahead and start looking at the secrets of the game board.

Game board and animations
Below is a screenshot of an ongoing game after a couple of moves and with the
menuPanel hidden.

15

Qt Quick Game Programming © 2010 QUIt Coding

Screenshot of the whole GameView while playing.

What you see here is the board with tiles and a control panel on right, showing
the game status and controls. We can start going through the code from
GameView.qml which collects all these components together.

import QtQuick 1.0

Item {
 id: gameView
 anchors.fill: parent
 ...

 // *** Background image ***
 Image {
 id: backgroundImage
 source: "images/background.jpg"
 x: ­gameView.width/8.0 – boardFlickable.contentX/4.0
 y: ­gameView.height/8.0 – boardFlickable.contentY/4.0
 }

The first element in the gameView is the background image with so called
“parallax scrolling”. This means that during scrolling, the background moves into
the same direction as the foreground but not as much. This creates a cool feeling
of depth and has given eye candy to computer games from the very early days,
so of course we want to do it with QML as well. We achieve this effect by binding
the x and y properties of the background image to fractions of the
boardFlickable's contentX and contentY properties.

16

Qt Quick Game Programming © 2010 QUIt Coding

 // *** Board ***
 Flickable {
 id: boardFlickable
 anchors.fill: parent
 contentWidth: boardGrid.width + \
 controlPanel.width + 40 + 10
 contentHeight: boardGrid.height + 40
 maximumFlickVelocity: 500
 flickDeceleration: 1000

Next we start the implementation of the board element. Flickable is part of the
stock QML elements, providing a view which takes in all sorts of QML content and
makes it scrollable (and flickable) horizontally and/or vertically. We specify the
content size to match the boardGrid size with suitable margins and slow down the
flicking animations with the maximumFlickVelocity and the flickDeceleration
properties since playing the 5-in-a-row game doesn't require moving from one
board side to another that often.

 Grid {
 id: boardGrid
 columns: 19
 spacing: 2
 x: 20
 y: 20

 Repeater {
 model: gameData.tiles
 Tile { }
 }
 }
 }
 }

Next comes the actual content of our Flickable: the boardGrid, which contains the
board tiles. The Grid component automatically wraps items into 19 rows when we
define the number of columns to be 19 and fill it with 19x19 = 361 tiles. The
Repeater QML component multiplies its content item as many times as model
property defines. Here the model comes from our C++ GameData class's tiles()
property, which returns a QDeclarativeListProperty<Tile> entity.

In the screenshot below, you see part of our flickable grid filled with tiles.

17

Qt Quick Game Programming © 2010 QUIt Coding

Tiles in different states

Before going further with the GameView.qml, let's check what Tile.qml, which we
just used for each board tile, contains.

import QtQuick 1.0

Item {
 id: tile
 width: 80; height: 80

 // Tile background rectangle
 Image {
 source: "images/tile_background.png"
 opacity: {
 if (modelData.highlighted)
 return 1.0
 else
 return 0.6
 }

Each Tile rectangle in the grid is 80x80 pixels. That should be large enough to hit
with a finger in our target devices but at the same time small enough to be able
to fit adequate amount of tiles on the screen to keep the game playable. The
Tile's background image has full opacity when it is highlighted (which means it is
the most recently selected tile) and 60% opacity when not, to reveal our beautiful
background image behind the board.

 Behavior on opacity {
 enabled: gameData.moves != 0
 NumberAnimation {

18

Qt Quick Game Programming © 2010 QUIt Coding

 properties:"opacity"
 duration: 500
 }
 }
 }

We set a behavior on opacity to get it changing smoothly. The syntax of QML
behaviors is “Behavior on <property> { [animations] }” which can be translated
to English as “Whenever the <property> changes, instead of changing it directly,
use the [animations]”. Behaviors are used to specify a default animation for a
property change and here we use it to animate opacity. Behaviors have an
enabled property and here we set it to be starting from the first move. So when
cleaning the whole board in the beginning of a new game, the tiles disappear
instantly.

 // Tile Button
 Image {
 anchors.centerIn: parent
 source: {
 if (modelData.hasButton1)
 "images/tile_button1.png"
 else if (modelData.hasButton2)
 "images/tile_button2.png"
 else
 ""
 }
 opacity: modelData.hasButton1 || modelData.hasButton2
 Behavior on opacity {
 enabled: gameData.moves != 0
 NumberAnimation {
 properties: "opacity"
 duration: 1500
 }
 }
 }

Next we create the button into the tile. The image is different depending on which
player has added it into the tile. Setting the opacity like this makes it visible only
when the tile has been selected, and behavior animates the opacity change just
like with the background but with a longer duration.

 MouseArea {
 anchors.fill: parent
 enabled: !modelData.hasButton1 && !modelData.hasButton2
 onClicked: {

19

Qt Quick Game Programming © 2010 QUIt Coding

 explosion.explode()
 gameData.flip(index)
 }
 }
 Explosion {
 id: explosion
 }
}

Tile needs to take in mouse/touch input so we add a MouseArea which fills the
whole tile area. We enable the area to receive mouse events only when the tile
doesn't already contain a button. When the tile is clicked, explosion animation is
started and flip() slot implemented in the GameData C++ class is called with the
index of the tile. This index property comes automatically from the Repeater
element of the GameView, and is the number of the tile, starting from 0. So
something between 0 and the number of elements inside the Repeater model
minus one. In this case the maximum index is 19*19 – 1 = 360. Speaking of the
GameView, we have now seen the whole Tile and can return to look at how the
GameView ends.

 // *** Animation to center the board ***
 ParallelAnimation {
 id: centeringAnimation
 NumberAnimation {
 target: boardFlickable
 property: "contentX"
 to: boardFlickable.contentWidth / 2 ­
 boardFlickable.width / 2
 duration: 1000
 easing.type: Easing.InOutQuad
 }

 NumberAnimation {
 target: boardFlickable
 property: "contentY"
 to: boardFlickable.contentHeight / 2 ­
 boardFlickable.height / 2
 duration: 1000
 easing.type: Easing.InOutQuad
 }
 }

Next in GameView we have an animation for moving the view into center of the
board when the game begins. This is implemented with a ParallelAnimation, an
animation which can group other animations inside it and run them in parallel.

20

Qt Quick Game Programming © 2010 QUIt Coding

Inside the ParallelAnimation, there are two NumberAnimations that operate on
the contentX and contentY properties of the boardFlickable, and animate them to
the center location in 1000ms.

There are plenty of more animation elements in QML which can be mixed to get
quite complex animations achieved like SequentialAnimation, SpringAnimation,
AnchorAnimation etc. Please consult Qt Quick reference documentation for details
and usage examples of these.

 // *** Control panel ***
 ControlPanel {
 id: controlPanel
 anchors.right: boardFlickable.right
 anchors.rightMargin: 10
 }
}

The last element in the GameView is the ControlPanel, which is shown in the right
side of the board. The screenshot below shows the ControlPanel in three different
states from left to right respectively: When the game has just started and the
Undo button is disabled, when the player 2, who sits on the opposite side of the
device, has the turn and when the game ended to the victory of the player 1.

Control panel in three different states

Sources of ControlPanel.qml are rather long so only going through here a few of
the most interesting pieces.

21

Qt Quick Game Programming © 2010 QUIt Coding

 Button {
 id: buttonUndo
 …
 text: "Undo"
 opacity: gameData.gameOn
 disabled: !gameData.moves
 onClicked: {
 gameData.undoTile()
 }
 }

The ControlPanel contains two button widgets which are implemented in
Button.qml. The Undo button is specified to be visible only when the game is on,
so that it gives room for the winner notification when the game ends. It is
disabled when no moves have been made and therefore performing undo is not
possible. When the button is clicked, the undoTile() slot of the GameData is
called.

 states: State {
 name: "Turned"
 when: !gameData.player1Turn
 PropertyChanges {
 target: rotablePanel
 rotation: 180
 }
 }

 transitions: Transition {
 NumberAnimation {
 properties: "rotation"
 easing.type: Easing.OutBack
 duration: 800
 }
 }

Another notable code block is the one above, which defines the secondary state
for top panels. When the player 2 has the turn, panels are rotated upside-down
as the idea is to play this game next to the opponent while keeping the device
still in between. This way the control panel information is always faced towards
the player whose turn it is, while keeping the device owner in control to move into
the main menu. We define a NumberAnimation for the rotation with "OutBack"
easing type, which gives a nice bouncy effect for the animation. There are plenty
of pre-defined animation easing curves to select from. Please consult QML
documentation for all of them.

22

Qt Quick Game Programming © 2010 QUIt Coding

We have now gone through the main QML UI parts of the game and can
concentrate next into the game data and the logic parts.

Game data structures
The game logic is implemented with C++ by implementing our own executable
game binary (see the other possibilities from earlier chapter). Our game is quite
simple so implementing the logic with JavaScript would also be a relatively simple
task. C++ was selected this time to demonstrate how it's done and to get a
better integration with our platforms.

We start from main.cpp which is very straightforward.

#include <QApplication>
#include "mainwidget.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 app.setStartDragDistance(30);
 MainWidget mainWidget;
 mainWidget.show();
 return app.exec();
}

First we create an instance of MainWidget and show it as our main view. Only
interesting line here is the setStartDragDistance which is used by flickable QML
items (Flickable, ListView etc.) to define the amount of pixels needed to start
movement. The correct amount is device specific and important for usability as
clicking with a finger causes always some movement and if the dragging starts
too easily, it is hard to perform a click.

Let's start looking into MainWidget class from its header file.

class MainWidget : public QDeclarativeView
{
 Q_OBJECT

public:
 MainWidget(QWidget *parent=0);
 ~MainWidget();
public slots:
 void minimizeWindow();
 void exitApplication();

23

Qt Quick Game Programming © 2010 QUIt Coding

private:
 QDeclarativeContext *m_context;
 GameData m_gameData;
};

Our MainWidget class is derived from QDeclarativeView, the canvas designed to
show and run QML content inside it. All public slots are callable from the QML
side, and used to control the main application functionalities. The GameData class
contains game specific features and is also exposed to QML through
QDeclarativeContext. Next we'll go through the implementation.

QString filename(contentPath + "MainView.qml");

MainWidget::MainWidget(QWidget *parent)
 : QDeclarativeView(parent)
{
 // Switch to fullscreen in device
#if defined(Q_OS_SYMBIAN) || defined(Q_WS_MAEMO_5)
 setWindowState(Qt::WindowFullScreen);
#endif

 setResizeMode(QDeclarativeView::SizeRootObjectToView);

The constructor of the MainWidget starts by setting the window into fullscreen
mode in Maemo and Symbian devices. On desktop platforms we keep the
application windowed. Then we want to set the view into
QDeclarativeView::SizeRootObjectToView mode, which basically means that our
QML root object (MainView.qml) will be resized based on the MainWidget's size
and thus will adjust itself to suit our device screen size or the window size. This
can be tested by resizing the game window and seeing how we have created an
UI that scales into different resolutions.

 // Register Tile to be available in QML
 qmlRegisterType<Tile>("gameCore", 1, 0, "Tile");

 // Setup context
 m_context = rootContext();
 m_context­>setContextProperty("mainWidget", this);
 m_context­>setContextProperty("gameData", &m_gameData);

 // Open root QML file
 setSource(QUrl(filename));
}

Next we'll register the Tile class to be visible in QML so that our tiles can access

24

Qt Quick Game Programming © 2010 QUIt Coding

their data. If you look back into Tile.qml, the modelData is available thanks to
this registration. To add also MainWidget (as mainWidget) and GameData (as
gameData) classes available into QML side, we take the root context of the view
and register these instances using the setContextProperty() method. The
ownership of these object instances remain in the C++ side so we can access the
data from QML easily through properties and by calling the public slots but the
memory management of the data continues to be handled in the C++ side.

QDeclarativeView's setSource(url) method loads the QML into the view and we
use it here to open our MainView.qml file. The reason for the parameter to be of
type QUrl instead of QString is that it is not limited into local files but instead can
take any url and load the QML also from network automatically. This network
transparency is yet another nice feature which is supported throughout QML.

In case you are looking at the full sources of MainWidget, you'll next see the
implementation of minimizeWindow() and exitApplication() slots. These are very
straightforward so we can skip them and move to bigger GameData class already.

As with the earlier MainWidget, let's start GameData also from its header.

class GameData : public QObject
{
 Q_OBJECT

public:
 GameData(QObject *parent=0);
 ~GameData();

 Q_PROPERTY(int moves READ moves WRITE setMoves NOTIFY
 movesChanged);
 int moves() const {return m_moves;}
 void setMoves(int moves) {if(moves==m_moves) return;
 m_moves = moves; emit movesChanged();}

GameData contains several Qt properties which are used to read and write the
game model variables. Properties work very effectively between QML and C++
sides. To declare a property, the Q_PROPERTY() macro is used.

The first property we implement is for the amount of moves made in the game so
far. The getter method to read the value is moves(), the setter method is
setMoves(int moves) and the notification signal which is emitted whenever the
value is changed is movesChanged(). Without this last NOTIFY signal the
information of property changes does not go through in QML, so it must not be
forgotten. Another important thing to remember when implementing the
properties is that setter function should always check whether the value really

25

Qt Quick Game Programming © 2010 QUIt Coding

changes and only emit the signal if it does, to prevent unnecessary property
changing chains from triggering.

Many of the properties in our game are very similar, but there is one which is
using a QML specific feature we have not yet seen.

 ...
 Q_PROPERTY(QDeclarativeListProperty<Tile> tiles READ tiles
 CONSTANT);
 QDeclarativeListProperty<Tile> tiles(){
 return QDeclarativeListProperty<Tile>(this, m_tiles);}

The QDeclarativeListProperty class allows applications to expose list-like
properties to QML and we use it here to expose a QList containing all the game
tiles. Using QLists like this with QML has limitations currently, mostly due to the
memory management and notifying changes in the list. But as our list of tiles is
static, we can use CONSTANT attribute which indicates that the property value
does not change. Constant properties cannot have a WRITE method or a NOTIFY
signal.

public slots:
 void resetGame();
 void pauseGame(bool state);
 void flip(int index);
 void undoTile();
 void updateTime();
signals:
 void movesChanged();
 void gameTimeChanged();
 void player1TurnChanged();
 void gameOnChanged();

Next in the GameData class are the public slots which are invokable from the
QML, and the changed signals of all our properties. The slots are not able to
return a value. In cases where this would be needed, use instead a public method
with the Q_INVOKABLE macro.

private:
 Tile *tile(int index) const {
 return (index >= 0 && index < m_tiles.count()) ?
 m_tiles.at(index) : 0;}
 bool checkWin(int index, int dx, int dy,
 QList<Tile *> &winningTiles);

 QList<Tile *> m_tiles;

26

Qt Quick Game Programming © 2010 QUIt Coding

 QStack<Tile *> m_selectedTiles;
 bool m_gameOn;
 bool m_player1Turn;
 int m_moves;
 int m_gameTimeSeconds;
 QTime m_gameTime;
 QTimer *m_gameTimer;
 QString m_time;
};

In the private section we have two helper methods. First one returns the pointer
of a tile, based on its index in the QList (the tile grid). This wrapper ensures that
the index is valid. Second helper method checks if there are 5 same tiles in a row
and the player has won.

The private variables contain a list of all tiles (m_tiles), a stack of the selected
tiles for undo (m_selectedTiles), the state of the game (m_gameOn) and few
other variables which usage is quite easy to understand.

From the GameData implementation we can pick the flip() slot which is called
whenever a user clicks a tile in the board to select it.

void GameData::flip(int index)
{
 if (!m_gameOn)
 return;

 Tile *t = tile(index);
 if (!t || t­>hasButton1() || t­>hasButton2())
 return;

First we check that the game is on and get the instance of the tile. To continue,
the tile must not be NULL and not be already selected.

 setMoves(m_moves+1);
 if (player1Turn()) {
 t­>setHasButton1(true);
 } else {
 t­>setHasButton2(true);
 }

Now we have progressed into a state where the amount of movements can be
increased. Instead of incrementing m_moves variable directly, we use setMoves
method which handles emitting the change also to the QML side. Then we set the
correct button visible, depending on whose turn it was.

27

Qt Quick Game Programming © 2010 QUIt Coding

 // Check for winning
 QList<Tile *> winningTiles;
 if (checkWin(index, 1, 0, winningTiles)
 || checkWin(index, 0, 1, winningTiles)
 || checkWin(index, 1, 1, winningTiles)
 || checkWin(index, 1, ­1, winningTiles)) {

 // Player whose turn it was won
 for(int i=0 ; i<winningTiles.count() ; ++i) {
 winningTiles.at(i)­>setHighlighted(true);
 }
 setGameOn(false);
 return;
 }

At this state we check if the new tile caused the current player to win. Algorithm
to assure this is implemented in the checkWin() method. In case this happened,
the tiles which form the winning row are collected into winningTiles and
highlighted in the for loop before setting the game stopped.

 // Set only last tile highlighted
 if (!m_selectedTiles.empty())
 m_selectedTiles.last()­>setHighlighted(false);
 t­>setHighlighted(true);

 // Add tile into selected list, for undo
 m_selectedTiles << t;

 setPlayer1Turn(!player1Turn());
}

If the game continues, we'll remove the highlight from the previously selected tile
using the m_selectedTiles stack, highlight this newly selected tile and add it on
the top of m_selectedTiles. The last operation in the flip() method is to change
the turn.

There are more code in the game logic on the C++ side but as it's not directly in
the scope of explaining how to utilize Qt Quick and QML, we'll let the readers to
continue on their own with the rest of the code.

OpenGL usage and Fluid 3D
To increase the eye-candy of our game and to demonstrate some more features
of Qt Quick, we will implement a “fluid” 3D mode for the game board. This
basically means that the board tilts when it's panned, to enable the user to see it

28

Qt Quick Game Programming © 2010 QUIt Coding

a bit further. So this also increases the usability as it's possible to see quite a big
area of the board with just a few quick panning moves. Below is a screenshot of
the board when flicked in 3D mode.

This kind of rotation animation of large elements is a good candidate for hardware
acceleration. Especially on embedded devices, the animation would not be smooth
if done utilizing the CPU. Qt supports OpenGL (ES) acceleration which usage is
transparent from QML, the viewport just needs to be set to be a QGLWidget
instead of the normal QWidget.

To enable OpenGL usage, we do a bit of additions into the MainWidget
constructor.

 // Set optimizations not already done in QDeclarativeView
 setAttribute(Qt::WA_OpaquePaintEvent);
 setAttribute(Qt::WA_NoSystemBackground);

 // Make QDeclarativeView use OpenGL backend
 QGLWidget *glWidget = new QGLWidget(this);
 setViewport(glWidget);
 setViewportUpdateMode(QGraphicsView::FullViewportUpdate);

QGraphicsView has plenty of flags which optimize how it behaves, first two lines
above are the ones which suit our needs. Changing QDeclarativeView (or
QGraphicsView) to use OpenGL is done by creating QGLWidget and setting the
view to use it with the setViewport method. The last line is is also an
optimization, telling view to always redraw the whole visible area of the view as
this is the fastest option (and should always be used) when OpenGL is used.

29

Qt Quick Game Programming © 2010 QUIt Coding

In Qt, the standard desktop Open GL and the OpenGL ES which is used in mobile
devices are both enabled with the same QGLWidget class. So effectively this
means that the code above uses OpenGL when running on a desktop computer
and OpenGL ES when running on Nokia N900 and similar mobile devices.

 // This implements "Fluid" 3D tilting
 transform: [
 Rotation {
 origin.x: gameView.width / 2
 origin.y: gameView.height / 2
 axis { x: 1; y: 0; z: 0 }
 angle: menuPanel.fluid3D ? Math.min(
 Math.max(­boardFlickable.verticalVelocity / 4,
 ­75), 75) : 0
 Behavior on angle { SpringAnimation {
 spring: 1.5; damping: 0.75 } }
 },
 Rotation {
 origin.x: gameView.width / 2
 origin.y: gameView.height / 2
 axis { x: 0; y: 1; z: 0 }
 angle: menuPanel.fluid3D ? Math.min(
 Math.max(boardFlickable.horizontalVelocity / 4,
 ­75), 75) : 0
 Behavior on angle { SpringAnimation {
 spring: 1.5; damping: 0.75 } }
 }
]

Tilting the board in 3D is done in GameView inside the boardFlickable element.
We use the transforms list property of Item, which can contain any amount of
Rotation, Scale and Translate transformations. We have separate rotations for x
and y axis which change the angle based on the boardFlickable's verticalVelocity
and horizontalVelocity properties respectively. To get the animation smoother, we
use a behavior on the angle property and a SpringAnimation which is designed to
follow the target value in a configurable spring-like manner.

30

Qt Quick Game Programming © 2010 QUIt Coding

Summary
We have now gone through the implementation of our game, which is targeted for
touch-screen enabled mobile devices. The game contains ~800 lines of QML code
and ~300 lines of C++. The source codes are not optimized for size in any way,
but this is still quite impressive considering the features, animations, OpenGL
(ES) acceleration etc. achieved with it.

With small improvements and feature additions, this game would be ready for
deployment in the OVI Store. We estimate the amount of Qt Quick-based content
to increase drastically during 2011 now that the Qt 4.7 has been released and the
number of devices supporting it will most likely be increasing.

To get more information about Qt Quick and to learn how to utilize it effectively,
please check the links below. Happy hacking, everyone!

Links:

• Home of Qt application and UI framework: http://qt.nokia.com

• Qt 4.7 documentation: http://doc.qt.nokia.com/4.7/

• Source codes of 5-in-a-row game and Debian package for Nokia N900 are
available from: http://quitcoding.com

31

http://quitcoding.com/
http://doc.qt.nokia.com/4.7/
http://qt.nokia.com/

QUIt Coding is a small group of talented individuals
enjoying software development with cutting edge
technologies. QUIt Coding expertises in Qt UI
technologies. We are official members of Qt Ambassador
Program. www.quitcoding.com

NOMOVOK is specialized on Open Source deployments,
especially focused on MeeGo product creation services.
NOMOVOK currently employs over 140 OSS specialists,
and collaborates tightly with 25 different leading OSS
companies worldwide. www.nomovok.com

	Introduction
	What is Qt Quick?
	Hello QML!
	Separation between QML UI and the application logic

	Implementing 5-in-a-row game
	Main UI
	Main menu and controls
	Game board and animations
	Game data structures
	OpenGL usage and Fluid 3D

	Summary

